Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450205

RESUMO

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Assuntos
Antivirais/farmacologia , Imunidade/efeitos dos fármacos , Spliceossomos/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Amplificação de Genes/efeitos dos fármacos , Humanos , Íntrons/genética , Camundongos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética
2.
Cell ; 167(5): 1310-1322.e17, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863245

RESUMO

Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted.


Assuntos
Epigenômica , Células-Tronco Hematopoéticas/citologia , Animais , Linhagem da Célula , Células Clonais/citologia , Fluorescência , Hematopoese , Inflamação/patologia , Camundongos , Transcrição Gênica
3.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
4.
Genes Dev ; 36(5-6): 368-389, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301220

RESUMO

Acute myeloid leukemia with KMT2A (MLL) rearrangements is characterized by specific patterns of gene expression and enhancer architecture, implying unique core transcriptional regulatory circuitry. Here, we identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. Rapid transcription factor degradation followed by measurements of genome-wide transcription rates and superresolution microscopy revealed that MEF2D and IRF8 form a distinct core regulatory module with a narrow direct transcriptional program that includes activation of the key oncogenes MYC, HOXA9, and BCL2. Our study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Rearranjo Gênico , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Oncogenes/genética
5.
Cell ; 158(5): 1110-1122, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25171411

RESUMO

Circulating tumor cell clusters (CTC clusters) are present in the blood of patients with cancer but their contribution to metastasis is not well defined. Using mouse models with tagged mammary tumors, we demonstrate that CTC clusters arise from oligoclonal tumor cell groupings and not from intravascular aggregation events. Although rare in the circulation compared with single CTCs, CTC clusters have 23- to 50-fold increased metastatic potential. In patients with breast cancer, single-cell resolution RNA sequencing of CTC clusters and single CTCs, matched within individual blood samples, identifies the cell junction component plakoglobin as highly differentially expressed. In mouse models, knockdown of plakoglobin abrogates CTC cluster formation and suppresses lung metastases. In breast cancer patients, both abundance of CTC clusters and high tumor plakoglobin levels denote adverse outcomes. Thus, CTC clusters are derived from multicellular groupings of primary tumor cells held together through plakoglobin-dependent intercellular adhesion, and though rare, they greatly contribute to the metastatic spread of cancer.


Assuntos
Neoplasias da Mama/patologia , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Animais , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Análise de Sequência de RNA , Análise de Célula Única , gama Catenina/metabolismo
6.
Cell ; 153(4): 855-68, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663783

RESUMO

RNAP II is frequently paused near gene promoters in mammals, and its transition to productive elongation requires active recruitment of P-TEFb, a cyclin-dependent kinase for RNAP II and other key transcription elongation factors. A fraction of P-TEFb is sequestered in an inhibitory complex containing the 7SK noncoding RNA, but it has been unclear how P-TEFb is switched from the 7SK complex to RNAP II during transcription activation. We report that SRSF2 (also known as SC35, an SR-splicing factor) is part of the 7SK complex assembled at gene promoters and plays a direct role in transcription pause release. We demonstrate RNA-dependent, coordinated release of SRSF2 and P-TEFb from the 7SK complex and transcription activation via SRSF2 binding to promoter-associated nascent RNA. These findings reveal an unanticipated SR protein function, a role for promoter-proximal nascent RNA in gene activation, and an analogous mechanism to HIV Tat/TAR for activating cellular genes.


Assuntos
Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA não Traduzido/metabolismo , Ribonucleoproteínas/metabolismo , Ativação Transcricional , Animais , Elementos Facilitadores Genéticos , Técnicas de Silenciamento de Genes , Camundongos , Proteínas Nucleares/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Fatores de Processamento de Serina-Arginina , Elongação da Transcrição Genética , Iniciação da Transcrição Genética
7.
Cell ; 153(2): 307-19, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582322

RESUMO

Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Transcrição Gênica
8.
Cell ; 153(2): 320-34, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582323

RESUMO

Chromatin regulators have become attractive targets for cancer therapy, but it is unclear why inhibition of these ubiquitous regulators should have gene-specific effects in tumor cells. Here, we investigate how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition of the MYC oncogene in multiple myeloma (MM). BRD4 and Mediator were found to co-occupy thousands of enhancers associated with active genes. They also co-occupied a small set of exceptionally large super-enhancers associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impacted genes with super-enhancers, including MYC. Super-enhancers were found at key oncogenic drivers in many other tumor cells. These observations have implications for the discovery of cancer therapeutics directed at components of super-enhancers in diverse tumor types.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Elementos Facilitadores Genéticos , Complexo Mediador/metabolismo , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triazóis/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cromatina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Humanos , Complexo Mediador/antagonistas & inibidores , Mieloma Múltiplo/genética , Proteínas Nucleares/antagonistas & inibidores , Elongação da Transcrição Genética , Fatores de Transcrição/antagonistas & inibidores
9.
Cell ; 154(3): 569-82, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911322

RESUMO

Heart failure (HF) is driven by the interplay between regulatory transcription factors and dynamic alterations in chromatin structure. Pathologic gene transactivation in HF is associated with recruitment of histone acetyl-transferases and local chromatin hyperacetylation. We therefore assessed the role of acetyl-lysine reader proteins, or bromodomains, in HF. Using a chemical genetic approach, we establish a central role for BET family bromodomain proteins in gene control during HF pathogenesis. BET inhibition potently suppresses cardiomyocyte hypertrophy in vitro and pathologic cardiac remodeling in vivo. Integrative transcriptional and epigenomic analyses reveal that BET proteins function mechanistically as pause-release factors critical to expression of genes that are central to HF pathogenesis and relevant to the pathobiology of failing human hearts. This study implicates epigenetic readers as essential effectors of transcriptional pause release during HF pathogenesis and identifies BET coactivator proteins as therapeutic targets in the heart.


Assuntos
Insuficiência Cardíaca/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cromatina , Modelos Animais de Doenças , Epigênese Genética , Coração , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Estrutura Terciária de Proteína , Ratos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Transcriptoma
10.
Cell ; 151(3): 476-82, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23101621

RESUMO

Gene expression analysis is a widely used and powerful method for investigating the transcriptional behavior of biological systems, for classifying cell states in disease, and for many other purposes. Recent studies indicate that common assumptions currently embedded in experimental and analytical practices can lead to misinterpretation of global gene expression data. We discuss these assumptions and describe solutions that should minimize erroneous interpretation of gene expression data from multiple analysis platforms.


Assuntos
Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/genética , Análise de Sequência de RNA , Transcrição Gênica
11.
Cell ; 151(1): 56-67, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021215

RESUMO

Elevated expression of the c-Myc transcription factor occurs frequently in human cancers and is associated with tumor aggression and poor clinical outcome. The effect of high levels of c-Myc on global gene regulation is poorly understood but is widely thought to involve newly activated or repressed "Myc target genes." We report here that in tumor cells expressing high levels of c-Myc the transcription factor accumulates in the promoter regions of active genes and causes transcriptional amplification, producing increased levels of transcripts within the cell's gene expression program. Thus, rather than binding and regulating a new set of genes, c-Myc amplifies the output of the existing gene expression program. These results provide an explanation for the diverse effects of oncogenic c-Myc on gene expression in different tumor cells and suggest that transcriptional amplification reduces rate-limiting constraints for tumor cell growth and proliferation.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Elementos Facilitadores Genéticos , Humanos , Neoplasias/patologia , Regiões Promotoras Genéticas , Transcrição Gênica
13.
Nature ; 589(7843): 608-614, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408413

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1-4. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.


Assuntos
Adenina/metabolismo , Edição de Genes/métodos , Mutação , Progéria/genética , Progéria/terapia , Alelos , Processamento Alternativo , Animais , Aorta/patologia , Pareamento de Bases , Criança , DNA/genética , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Progéria/patologia , RNA/genética
14.
Nature ; 578(7794): 278-283, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025033

RESUMO

The biology of haematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions1,2. It has been particularly challenging to study dynamic HSC behaviour, given that the visualization of HSCs in the native niche in live animals has not, to our knowledge, been achieved. Here we describe a dual genetic strategy in mice that restricts reporter labelling to a subset of the most quiescent long-term HSCs (LT-HSCs) and that is compatible with current intravital imaging approaches in the calvarial bone marrow3-5. We show that this subset of LT-HSCs resides close to both sinusoidal blood vessels and the endosteal surface. By contrast, multipotent progenitor cells (MPPs) show greater variation in distance from the endosteum and are more likely to be associated with transition zone vessels. LT-HSCs are not found in bone marrow niches with the deepest hypoxia and instead are found in hypoxic environments similar to those of MPPs. In vivo time-lapse imaging revealed that LT-HSCs at steady-state show limited motility. Activated LT-HSCs show heterogeneous responses, with some cells becoming highly motile and a fraction of HSCs expanding clonally within spatially restricted domains. These domains have defined characteristics, as HSC expansion is found almost exclusively in a subset of bone marrow cavities with bone-remodelling activity. By contrast, cavities with low bone-resorbing activity do not harbour expanding HSCs. These findings point to previously unknown heterogeneity within the bone marrow microenvironment, imposed by the stages of bone turnover. Our approach enables the direct visualization of HSC behaviours and dissection of heterogeneity in HSC niches.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Imagem Molecular , Animais , Remodelação Óssea , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Genes Reporter , Hipóxia/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Masculino , Camundongos , Oxigênio/metabolismo , Crânio/citologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(16): e2120826120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040407

RESUMO

In newborn humans, and up to approximately 2 y of age, calvarial bone defects can naturally regenerate. This remarkable regeneration potential is also found in newborn mice and is absent in adult mice. Since previous studies showed that the mouse calvarial sutures are reservoirs of calvarial skeletal stem cells (cSSCs), which are the cells responsible for calvarial bone regeneration, here we hypothesized that the regenerative potential of the newborn mouse calvaria is due to a significant amount of cSSCs present in the newborn expanding sutures. Thus, we tested whether such regenerative potential can be reverse engineered in adult mice by artificially inducing an increase of the cSSCs resident within the adult calvarial sutures. First, we analyzed the cellular composition of the calvarial sutures in newborn and in older mice, up to 14-mo-old mice, showing that the sutures of the younger mice are enriched in cSSCs. Then, we demonstrated that a controlled mechanical expansion of the functionally closed sagittal sutures of adult mice induces a significant increase of the cSSCs. Finally, we showed that if a calvarial critical size bone defect is created simultaneously to the mechanical expansion of the sagittal suture, it fully regenerates without the need for additional therapeutic aids. Using a genetic blockade system, we further demonstrate that this endogenous regeneration is mediated by the canonical Wnt signaling. This study shows that controlled mechanical forces can harness the cSSCs and induce calvarial bone regeneration. Similar harnessing strategies may be used to develop novel and more effective bone regeneration autotherapies.


Assuntos
Regeneração Óssea , Suturas Cranianas , Humanos , Adulto , Camundongos , Animais , Células-Tronco , Proliferação de Células , Suturas
16.
Nat Methods ; 19(12): 1622-1633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424441

RESUMO

Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells. It is compatible with in situ and in vivo imaging and can document the temporal and dynamic history of the cells being analyzed. Cell samples are isolated from intact tissue and processed with state-of-the-art library preparation protocols. The technique therefore combines spatial information with highly sensitive RNA sequencing readouts from individual, intact cells. We have used both high-throughput, droplet-based sequencing as well as SMARTseq-v4 library preparation to demonstrate its application to bone marrow and leukemia biology. We discovered that DPP4 is a highly upregulated gene during early progression of acute myeloid leukemia and that it marks a more proliferative subpopulation that is confined to specific bone marrow microenvironments. Furthermore, the ability of Image-seq to isolate viable, intact cells should make it compatible with a range of downstream single-cell analysis tools including multi-omics protocols.


Assuntos
Diagnóstico por Imagem , Leucemia , Humanos , Análise de Sequência de RNA , Contagem de Células , Biblioteca Gênica , Microambiente Tumoral
17.
Am J Pathol ; 194(6): 1047-1061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403161

RESUMO

Hyaluronan (HA), a negatively charged linear glycosaminoglycan, is a key macromolecular component of the articular cartilage extracellular matrix. The differential effects of HA are determined by a spatially/temporally regulated display of HA receptors, such as CD44 and receptor for hyaluronan-mediated motility (RHAMM). HA signaling through CD44 with RHAMM has been shown to stimulate inflammation and fibrotic processes. This study shows an increased expression of RHAMM in proinflammatory macrophages. Interfering with HA/RHAMM interactions using a 15-mer RHAMM-mimetic, HA-binding peptide, together with high-molecular-weight (HMW) HA reduced the expression and release of inflammatory markers and increased the expression of anti-inflammatory markers in proinflammatory macrophages. HA/RHAMM interactions were interfered in vivo during the regeneration of a full-thickness cartilage defect after microfracture surgery in rabbits using three intra-articular injections of 15-mer RHAMM-mimetic. HA-binding peptide together with HMWHA reduced the number of proinflammatory macrophages and increased the number of anti-inflammatory macrophages in the injured knee joint and greatly improved the repair of the cartilage defect compared with intra-articular injections of HMWHA alone. These findings suggest that HA/RHAMM interactions play a key role in cartilage repair/regeneration via stimulating inflammatory and fibrotic events, including increasing the ratio of proinflammatory/anti-inflammatory macrophages. Interfering with these interactions reduced inflammation and greatly improved cartilage repair.


Assuntos
Cartilagem Articular , Receptores de Hialuronatos , Ácido Hialurônico , Macrófagos , Animais , Receptores de Hialuronatos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Coelhos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Inflamação/metabolismo , Inflamação/patologia
18.
Blood ; 141(23): 2841-2852, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36877894

RESUMO

Therapeutic targeting of CDK7 has proven beneficial in preclinical studies, yet the off-target effects of currently available CDK7 inhibitors make it difficult to pinpoint the exact mechanisms behind MM cell death mediated by CDK7 inhibition. Here, we show that CDK7 expression positively correlates with E2F and MYC transcriptional programs in cells from patients with multiple myeloma (MM); its selective targeting counteracts E2F activity via perturbation of the cyclin-dependent kinases/Rb axis and impairs MYC-regulated metabolic gene signatures translating into defects in glycolysis and reduced levels of lactate production in MM cells. CDK7 inhibition using the covalent small-molecule inhibitor YKL-5-124 elicits a strong therapeutic response with minimal effects on normal cells, and causes in vivo tumor regression, increasing survival in several mouse models of MM including a genetically engineered mouse model of MYC-dependent MM. Through its role as a critical cofactor and regulator of MYC and E2F activity, CDK7 is therefore a master regulator of oncogenic cellular programs supporting MM growth and survival, and a valuable therapeutic target providing rationale for development of YKL-5-124 for clinical use.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Mieloma Múltiplo , Animais , Camundongos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Mieloma Múltiplo/genética
19.
Blood ; 141(4): 391-405, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36126301

RESUMO

Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , Mieloma Múltiplo/genética , Cromatina , MicroRNAs/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
20.
Cell ; 141(3): 432-45, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20434984

RESUMO

Recruitment of the RNA polymerase II (Pol II) transcription initiation apparatus to promoters by specific DNA-binding transcription factors is well recognized as a key regulatory step in gene expression. We report here that promoter-proximal pausing is a general feature of transcription by Pol II in mammalian cells and thus an additional step where regulation of gene expression occurs. This suggests that some transcription factors recruit the transcription apparatus to promoters, whereas others effect promoter-proximal pause release. Indeed, we find that the transcription factor c-Myc, a key regulator of cellular proliferation, plays a major role in Pol II pause release rather than Pol II recruitment at its target genes. We discuss the implications of these results for the role of c-Myc amplification in human cancer.


Assuntos
Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Proliferação de Células , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA