Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(44): 51110-51116, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37903337

RESUMO

Zinc antimonides, particularly the ß-Zn4Sb3 compound, act as prototypes in the early phases of thermoelectric generator (TEG) development. However, their potential applications are constrained by structural instability at elevated temperatures. In this study, introducing a low concentration of aluminum (Al) achieves a highly stable Al-Zn4Sb3, exhibiting an improved peak zT value compared to undoped Zn4Sb3. Notably, a single-leg device utilizing a fully dense Al0.01Zn3.99Sb3 demonstrates an impressive conversion efficiency (η) of 3% even at a temperature difference (ΔT) of 225 K. This result represents an approximately 200% increase compared with the pristine one. The combination of dilute cationic doping and phase diagram engineering solidifies the potential of Zn4Sb3 as an efficient and sustainable green energy device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA