Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2313096121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261613

RESUMO

Ether solvents are suitable for formulating solid-electrolyte interphase (SEI)-less ion-solvent cointercalation electrolytes in graphite for Na-ion and K-ion batteries. However, ether-based electrolytes have been historically perceived to cause exfoliation of graphite and cell failure in Li-ion batteries. In this study, we develop strategies to achieve reversible Li-solvent cointercalation in graphite through combining appropriate Li salts and ether solvents. Specifically, we design 1M LiBF4 1,2-dimethoxyethane (G1), which enables natural graphite to deliver ~91% initial Coulombic efficiency and >88% capacity retention after 400 cycles. We captured the spatial distribution of LiF at various length scales and quantified its heterogeneity. The electrolyte shows self-terminated reactivity on graphite edge planes and results in a grainy, fluorinated pseudo-SEI. The molecular origin of the pseudo-SEI is elucidated by ab initio molecular dynamics (AIMD) simulations. The operando synchrotron analyses further demonstrate the reversible and monotonous phase transformation of cointercalated graphite. Our findings demonstrate the feasibility of Li cointercalation chemistry in graphite for extreme-condition batteries. The work also paves the foundation for understanding and modulating the interphase generated by ether electrolytes in a broad range of electrodes and batteries.

2.
Nucleic Acids Res ; 52(9): 4969-4984, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38452206

RESUMO

Proteasome-mediated degradation of chromatin-bound NF-κB is critical in terminating the transcription of pro-inflammatory genes and can be triggered by Set9-mediated lysine methylation of the RelA subunit. However, the E3 ligase targeting methylated RelA remains unknown. Here, we find that two structurally similar substrate-recognizing components of Cullin-RING E3 ligases, WSB1 and WSB2, can recognize chromatin-bound methylated RelA for polyubiquitination and proteasomal degradation. We showed that WSB1/2 negatively regulated a subset of NF-κB target genes via associating with chromatin where they targeted methylated RelA for ubiquitination, facilitating the termination of NF-κB-dependent transcription. WSB1/2 specifically interacted with methylated lysines (K) 314 and 315 of RelA via their N-terminal WD-40 repeat (WDR) domains, thereby promoting ubiquitination of RelA. Computational modeling further revealed that a conserved aspartic acid (D) at position 158 within the WDR domain of WSB2 coordinates K314/K315 of RelA, with a higher affinity when either of the lysines is methylated. Mutation of D158 abolished WSB2's ability to bind to and promote ubiquitination of methylated RelA. Together, our study identifies a novel function and the underlying mechanism for WSB1/2 in degrading chromatin-bound methylated RelA and preventing sustained NF-κB activation, providing potential new targets for therapeutic intervention of NF-κB-mediated inflammatory diseases.


Assuntos
Cromatina , Complexo de Endopeptidases do Proteassoma , Fator de Transcrição RelA , Ubiquitinação , Humanos , Cromatina/metabolismo , Células HEK293 , Lisina/metabolismo , Metilação , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Fator de Transcrição RelA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38453467

RESUMO

Pain perception arises from the integration of prior expectations with sensory information. Although recent work has demonstrated that treatment expectancy effects (e.g., placebo hypoalgesia) can be explained by a Bayesian integration framework incorporating the precision level of expectations and sensory inputs, the key factor modulating this integration in stimulus expectancy-induced pain modulation remains unclear. In a stimulus expectancy paradigm combining emotion regulation in healthy male and female adults, we found that participants' voluntary reduction in anticipatory anxiety and pleasantness monotonically reduced the magnitude of pain modulation by negative and positive expectations, respectively, indicating a role of emotion. For both types of expectations, Bayesian model comparisons confirmed that an integration model using the respective emotion of expectations and sensory inputs explained stimulus expectancy effects on pain better than using their respective precision. For negative expectations, the role of anxiety is further supported by our fMRI findings that (1) functional coupling within anxiety-processing brain regions (amygdala and anterior cingulate) reflected the integration of expectations with sensory inputs and (2) anxiety appeared to impair the updating of expectations via suppressed prediction error signals in the anterior cingulate, thus perpetuating negative expectancy effects. Regarding positive expectations, their integration with sensory inputs relied on the functional coupling within brain structures processing positive emotion and inhibiting threat responding (medial orbitofrontal cortex and hippocampus). In summary, different from treatment expectancy, pain modulation by stimulus expectancy emanates from emotion-modulated integration of beliefs with sensory evidence and inadequate belief updating.


Assuntos
Antecipação Psicológica , Ansiedade , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Ansiedade/psicologia , Ansiedade/fisiopatologia , Adulto , Antecipação Psicológica/fisiologia , Adulto Jovem , Percepção da Dor/fisiologia , Dor/psicologia , Dor/fisiopatologia , Teorema de Bayes , Emoções/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Prazer/fisiologia , Mapeamento Encefálico
4.
Plant J ; 118(6): 1955-1971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491864

RESUMO

Photoperiod employs complicated networks to regulate various developmental processes in plants, including flowering transition. However, the specific mechanisms by which photoperiod affects epigenetic modifications and gene expression variations in plants remain elusive. In this study, we conducted a comprehensive analysis of DNA methylation, small RNA (sRNA) accumulation, and gene expressions under different daylengths in facultative long-day (LD) grass Brachypodium distachyon and short-day (SD) grass rice. Our results showed that while overall DNA methylation levels were minimally affected by different photoperiods, CHH methylation levels were repressed under their favorable light conditions, particularly in rice. We identified numerous differentially methylated regions (DMRs) that were influenced by photoperiod in both plant species. Apart from differential sRNA clusters, we observed alterations in the expression of key components of the RNA-directed DNA methylation pathway, DNA methyltransferases, and demethylases, which may contribute to the identified photoperiod-influenced CHH DMRs. Furthermore, we identified many differentially expressed genes in response to different daylengths, some of which were associated with the DMRs. Notably, we discovered a photoperiod-responsive gene MYB11 in the transcriptome of B. distachyon, and further demonstrated its role as a flowering inhibitor by repressing FT1 transcription. Together, our comparative and functional analysis sheds light on the effects of daylength on DNA methylation, sRNA accumulation, and gene expression variations in LD and SD plants, thereby facilitating better designing breeding programs aimed at developing high-yield crops that can adapt to local growing seasons.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Oryza , Fotoperíodo , RNA de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Brachypodium/fisiologia , Epigênese Genética , Flores/genética , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Infect Dis ; 230(2): 485-496, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38781438

RESUMO

BACKGROUND: Asymptomatic carriage of malaria parasites persists even as malaria transmission declines. Low-density infections are often submicroscopic, not detected with rapid diagnostic tests (RDTs) or microscopy but detectable by polymerase chain reaction (PCR). METHODS: To characterize submicroscopic Plasmodium falciparum carriage in an area of declining malaria transmission, asymptomatic persons >5 years of age in rural Bagamoyo District, Tanzania, were screened using RDT, microscopy, and PCR. We investigated the size of the submicroscopic reservoir of infection across villages, determined factors associated with submicroscopic carriage, and assessed the natural history of submicroscopic malaria over 4 weeks. RESULTS: Among 6076 participants, P. falciparum prevalences by RDT, microscopy, and PCR were 9%, 9%, and 28%, respectively, with roughly two-thirds of PCR-positive individuals harboring submicroscopic infection. Adult status, female sex, dry season months, screened windows, and bed net use were associated with submicroscopic carriage. Among 15 villages encompassing 80% of participants, the proportion of submicroscopic carriers increased with decreasing village-level malaria prevalence. Over 4 weeks, 23% of submicroscopic carriers (61 of 266) became RDT positive, with half exhibiting symptoms, while half (133 of 266) were no longer parasitemic at the end of 4 weeks. Progression to RDT-positive patent malaria occurred more frequently in villages with higher malaria prevalence. CONCLUSIONS: Microheterogeneity in transmission observed at the village level appears to affect both the size of the submicroscopic reservoir and the likelihood of submicroscopic carriers developing patent malaria in coastal Tanzania.


Assuntos
Portador Sadio , Malária Falciparum , Plasmodium falciparum , Humanos , Tanzânia/epidemiologia , Feminino , Malária Falciparum/transmissão , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Adulto , Adolescente , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Criança , Portador Sadio/transmissão , Portador Sadio/epidemiologia , Portador Sadio/parasitologia , Adulto Jovem , Pré-Escolar , Prevalência , Pessoa de Meia-Idade , População Rural , Reação em Cadeia da Polimerase , Microscopia , Infecções Assintomáticas/epidemiologia , Idoso
6.
J Cogn Neurosci ; 36(6): 1172-1183, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579250

RESUMO

Humans can flexibly adjust their executive control to resolve conflicts. Conflict adaptation and conflict resolution are crucial aspects of conflict processing. Functional neuroimaging studies have associated the dorsolateral prefrontal cortex (DLPFC) with conflict processing, but its causal role remains somewhat controversial. Moreover, the neuroanatomical basis of conflict processing has not been thoroughly examined. In this study, the Stroop task, a well-established measure of conflict, was employed to investigate (1) the neuroanatomical basis of conflict resolution and conflict adaptation with the voxel-based morphometry analysis, (2) the causal role of DLPFC in conflict processing with the application of the continuous theta burst stimulation to DLPFC. The results revealed that the Stroop effect was correlated to the gray matter volume of the precuneus, postcentral gyrus, and cerebellum, and the congruency sequence effect was correlated to the gray matter volume of superior frontal gyrus, postcentral gyrus, and lobule paracentral gyrus. These findings indicate the neuroanatomical basis of conflict resolution and adaptation. In addition, the continuous theta burst stimulation over the right DLPFC resulted in a significant reduction in the Stroop effect of RT after congruent trials compared with vertex stimulation and a significant increase in the Stroop effect of accuracy rate after incongruent trials than congruent trials, demonstrating the causal role of right DLPFC in conflict adaptation. Moreover, the DLPFC stimulation did not affect the Stroop effect of RT and accuracy rate. Overall, our study offers further insights into the neural mechanisms underlying conflict resolution and adaptation.


Assuntos
Conflito Psicológico , Córtex Pré-Frontal Dorsolateral , Imageamento por Ressonância Magnética , Teste de Stroop , Ritmo Teta , Estimulação Magnética Transcraniana , Humanos , Masculino , Adulto Jovem , Feminino , Adulto , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Ritmo Teta/fisiologia , Substância Cinzenta/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Adaptação Psicológica/fisiologia , Lateralidade Funcional/fisiologia , Mapeamento Encefálico , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Tempo de Reação/fisiologia
7.
Neuroimage ; 289: 120552, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387742

RESUMO

Distractor suppression (DS) is crucial in goal-oriented behaviors, referring to the ability to suppress irrelevant information. Current evidence points to the prefrontal cortex as an origin region of DS, while subcortical, occipital, and temporal regions are also implicated. The present study aimed to examine the contribution of communications between these brain regions to visual DS. To do it, we recruited two independent cohorts of participants for the study. One cohort participated in a visual search experiment where a salient distractor triggering distractor suppression to measure their DS and the other cohort filled out a Cognitive Failure Questionnaire to assess distractibility in daily life. Both cohorts collected resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate function connectivity (FC) underlying DS. First, we generated predictive models of the DS measured in visual search task using resting-state functional connectivity between large anatomical regions. It turned out that the models could successfully predict individual's DS, indicated by a significant correlation between the actual and predicted DS (r = 0.32, p < 0.01). Importantly, Prefrontal-Temporal, Insula-Limbic and Parietal-Occipital connections contributed to the prediction model. Furthermore, the model could also predict individual's daily distractibility in the other independent cohort (r = -0.34, p < 0.05). Our findings showed the efficiency of the predictive models of distractor suppression encompassing connections between large anatomical regions and highlighted the importance of the communications between attention-related and visual information processing regions in distractor suppression. Current findings may potentially provide neurobiological markers of visual distractor suppression.


Assuntos
Atenção , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Percepção Visual , Mapeamento Encefálico , Córtex Pré-Frontal , Imageamento por Ressonância Magnética
8.
J Am Chem Soc ; 146(12): 8520-8527, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491937

RESUMO

Two-dimensional (2D) zeolite, with a high aspect ratio, has more open skeletons and accessible active sites than its three-dimensional (3D) counterpart. However, traditional methods of obtaining 2D zeolites often cause structural damage and widespread skeleton defects, hindering efficient selectivity in molecular separation. In this study, we present, for the first time, a direct epitaxial synthesis of 2D zeolite (Epi-MWW) guided by hexagonal boron nitride (h-BN) with a coincidence matching of site lattices to MWW zeolite. The as-grown Epi-MWW zeolite possesses a high crystallinity and intact hexagonal 2D morphology, with an average thickness of 10 nm and an aspect ratio of over 50. Thanks to its excellent molecular accessibility, the diffusion time constants of o-xylene (OX) and p-xylene (PX) are as 12 and 133 times higher than those of conventional MCM-22, respectively; the PX/OX selectivity of Epi-MWW is 7.4 times better than MCM-22 as calculated by the ideal adsorbed solution theory.

9.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847794

RESUMO

Traditional Li-ion intercalation chemistry into graphite anodes exclusively utilizes the cointercalation-free or cointercalation mechanism. The latter mechanism is based on ternary graphite intercalation compounds (t-GICs), where glyme solvents were explored and proved to deliver unsatisfactory cyclability in LIBs. Herein, we report a novel intercalation mechanism, that is, in situ synthesis of t-GIC in the tetrahydrofuran (THF) electrolyte via a spontaneous, controllable reaction between binary-GIC (b-GIC) and free THF molecules during initial graphite lithiation. The spontaneous transformation from b-GIC to t-GIC, which is different from conventional cointercalation chemistry, is characterized and quantified via operando synchrotron X-ray and electrochemical analyses. The resulting t-GIC chemistry obviates the necessity for complete Li-ion desolvation, facilitating rapid kinetics and synchronous charge/discharge of graphite particles, even under high current densities. Consequently, the graphite anode demonstrates unprecedented fast charging (1 min), dendrite-free low-temperature performance, and ultralong lifetimes exceeding 10 000 cycles. Full cells coupled with a layered cathode display remarkable cycling stability upon a 15 min charging and excellent rate capability even at -40 °C. Furthermore, our chemical strategies are shown to extend beyond Li-ion batteries to encompass Na-ion and K-ion batteries, underscoring their broad applicability. Our work contributes to the advancement of graphite intercalation chemistry and presents a low-cost, adaptable approach for achieving fast-charging and low-temperature batteries.

10.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853277

RESUMO

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Assuntos
Antígenos CD55 , Núcleo Celular , Cromatina , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Histonas , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Feminino , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Antígenos CD55/metabolismo , Antígenos CD55/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Metilação , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Transporte Proteico
11.
Cancer Immunol Immunother ; 73(2): 34, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280067

RESUMO

Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft mouse models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8 + T cells. In particular, tumor-infiltrating cytotoxic lymphocytes from UMCD6-treated mice expressed higher levels of perforin and were found in higher proportions than those from IgG-treated mice. Moreover, RNA-seq analysis of human NK-92 cells treated with UMCD6 revealed that UMCD6 up-regulates the NKG2D-DAP10 receptor complex, important in NK cell activation, as well as its downstream target PI3K. Our results now describe the phenotypic changes that occur on immune cells upon treatment with UMCD6 and further confirm that the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Antígenos CD , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Neoplasias , Moléculas de Adesão Celular , Linfócitos/metabolismo , Microambiente Tumoral
12.
J Antimicrob Chemother ; 79(3): 526-530, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300833

RESUMO

BACKGROUND: HIV-1 drug resistance is a huge challenge in the era of ART. OBJECTIVES: To investigate the prevalence and characteristics of acquired HIV-1 drug resistance (ADR) in Shanghai, China. METHODS: An epidemiological study was performed among people living with human immunodeficiency virus (PLWH) receiving ART in Shanghai from January 2017 to December 2021. A total of 8669 PLWH were tested for drug resistance by genotypic resistance testing. Drug resistance mutations (DRMs) were identified using the Stanford University HIV Drug Resistance Database program. RESULTS: Ten HIV-1 subtypes/circulating recombinant forms (CRFs) were identified, mainly including CRF01_AE (46.8%), CRF07_BC (35.7%), B (6.4%), CRF55_01B (2.8%) and CRF08_BC (2.4%). The prevalence of ADR was 48% (389/811). Three NRTI-associated mutations (M184V/I/L, S68G/N/R and K65R/N) and four NNRTI-associated mutations (V179D/E/T/L, K103N/R/S/T, V106M/I/A and G190A/S/T/C/D/E/Q) were the most common DRMs. These DRMs caused high-level resistance to lamivudine, emtricitabine, efavirenz and nevirapine. The DRM profiles appeared to be significantly different among different subtypes. CONCLUSIONS: We revealed HIV-1 subtype characteristics and the DRM profile in Shanghai, which provide crucial guidance for clinical treatment and management of PLWH.


Assuntos
Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Estudos Retrospectivos , China/epidemiologia , Alcinos
13.
J Med Virol ; 96(1): e29333, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175151

RESUMO

Oral nirmatrelvir/ritonavir is approved as treatment for acute COVID-19, but the effect of treatment during acute infection on risk of Long COVID is unknown. We hypothesized that nirmatrelvir treatment during acute SARS-CoV-2 infection reduces risk of developing Long COVID and rebound after treatment is associated with Long COVID. We conducted an observational cohort study within the Covid Citizen Science (CCS) study, an online cohort study with over 100 000 participants. We included vaccinated, nonhospitalized, nonpregnant individuals who reported their first SARS-CoV-2 positive test March-August 2022. Oral nirmatrelvir/ritonavir treatment was ascertained during acute SARS-CoV-2 infection. Patient-reported Long COVID symptoms, symptom rebound and test-positivity rebound were asked on subsequent surveys at least 3 months after SARS-CoV-2 infection. A total of 4684 individuals met the eligibility criteria, of whom 988 (21.1%) were treated and 3696 (78.9%) were untreated; 353/988 (35.7%) treated and 1258/3696 (34.0%) untreated responded to the Long COVID survey (n = 1611). Among 1611 participants, median age was 55 years and 66% were female. At 5.4 ± 1.3 months after infection, nirmatrelvir treatment was not associated with subsequent Long COVID symptoms (odds ratio [OR]: 1.15; 95% confidence interval [CI]: 0.80-1.64; p = 0.45). Among 666 treated who answered rebound questions, rebound symptoms or test positivity were not associated with Long COVID symptoms (OR: 1.34; 95% CI: 0.74-2.41; p = 0.33). Within this cohort of vaccinated, nonhospitalized individuals, oral nirmatrelvir treatment during acute SARS-CoV-2 infection and rebound after nirmatrelvir treatment were not associated with Long COVID symptoms more than 90 days after infection.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Ritonavir , Estudos de Coortes , SARS-CoV-2
14.
Cardiovasc Diabetol ; 23(1): 302, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152431

RESUMO

BACKGROUND: The binary diagnosis of Metabolic Syndrome(MetS) fails to accurately evaluate its severity, and the association between MetS severity and frailty progression remains inadequately elucidated. This study aims to clarify the relationship between the severity of MetS and the progression of frailty among the middle-aged and elderly population in China. METHOD: Participants from the 2011-2018 China Health and Retirement Longitudinal Study(CHARLS) were included for a longitudinal analysis. The study employs a frailty index(FI) based on 32 health deficits to diagnose frailty and to assess FI trajectories. An age-sex-ethnicity-specific MetS scoring model (MetS score) was used to assess metabolic syndrome severity in Chinese adults. The Cumulative MetS score from 2012 to 2015 was calculated using the formula: (MetS score in wave 1 + MetS score in wave 3) / 2 × time(2015 - 2012). The association between MetS score, Cumulative MetS score, and the risk and trajectory of frailty were evaluated using Cox regression/logistic regression, and linear mixed models. Restricted Cubic Splines(RCS) models were utilized to detect potential non-linear associations. RESULTS: A higher MetS score was significantly associated with an increased risk of frailty(HR per 1 SD increase = 1.205; 95%CI: 1.14 to 1.273) and an accelerated FI trajectory(ß per 1 SD increase = 0.113 per year; 95%CI: 0.075 to 0.15 per year). Evaluating changes in MetS score using a Cumulative MetS score indicated that each 1 SD increase in the Cumulative MetS score increased the risk of frailty by 22.2%(OR = 1.222; 95%CI: 1.133 to 1.319) and accelerated the rate of increase in FI(ß = 0.098 per year; 95%CI: 0.058 to 0.138 per year). RCS model results demonstrated a dose-response curve relationship between MetS score and Cumulative MetS score with frailty risk. Stratified analysis showed consistency across subgroups. The interaction results indicate that in males and individuals under aged 60, MetS score may accelerate the increase in FI, a finding consistent across both models. CONCLUSIONS: Our findings underscore the positive correlation between the severity of MetS and frailty progression in the middle-aged and elderly, highlighting the urgent need for early identification of MetS and targeted interventions to reduce the risk of frailty.


Assuntos
Progressão da Doença , Idoso Fragilizado , Fragilidade , Avaliação Geriátrica , Síndrome Metabólica , Índice de Gravidade de Doença , Humanos , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/fisiopatologia , Fragilidade/diagnóstico , Fragilidade/epidemiologia , Fragilidade/fisiopatologia , Masculino , Feminino , Estudos Longitudinais , China/epidemiologia , Idoso , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Fatores Etários , Fatores de Tempo , Idoso de 80 Anos ou mais , Prognóstico , População do Leste Asiático
15.
J Exp Bot ; 75(10): 3026-3039, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38318854

RESUMO

Grape white rot is a devastating fungal disease caused by Coniella diplodiella. The pathogen delivers effectors into the host cell that target crucial immune components to facilitate its infection. Here, we examined a secreted effector of C. diplodiella, known as CdE1, which has been found to inhibit Bax-triggered cell death in Nicotiana benthamiana plants. The expression of CdE1 was induced at 12-48 h after inoculation with C. diplodiella, and the transient overexpression of CdE1 led to increased susceptibility of grapevine to the fungus. Subsequent experiments revealed an interaction between CdE1 and Vitis davidii cysteine-rich receptor-like kinase 10 (VdCRK10) and suppression of VdCRK10-mediated immunity against C. diplodiella, partially by decreasing the accumulation of VdCRK10 protein. Furthermore, our investigation revealed that CRK10 expression was significantly higher and was up-regulated in the resistant wild grapevine V. davidii during C. diplodiella infection. The activity of the VdCRK10 promoter is induced by C. diplodiella and is higher than that of Vitis vitifera VvCRK10, indicating the involvement of transcriptional regulation in CRK10 gene expression. Taken together, our results highlight the potential of VdCRK10 as a resistant gene for enhancing white rot resistance in grapevine.


Assuntos
Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Vitis , Vitis/genética , Vitis/microbiologia , Vitis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
16.
Chemistry ; : e202401442, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052252

RESUMO

Commercial lithium-ion batteries are gradually approaching their theoretical values (200-250 Wh kg-1), which cannot meet the fast-growing energy storage demands. Lithium-sulfur (Li-S) batteries are anticipated to supersede lithium-ion batteries as the next-generation energy storage system owing to their high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). Nonetheless, Li-S batteries encounter several challenges, including the inadequate conductivity of sulfur and lithium sulfide, sulfur's volume expansion, and the shuttle effect of lithium polysulfides, all of which significantly impact the practical utilization of Li-S batteries. Electrospun carbon-based nanofibers can simultaneously resolve these issues with their economical preparation, distinctive nanostructure, and exceptional flexibility. This review presents the most recent research findings on electrospun carbon-based nanofibers materials serving as sulfur hosts and interlayer components in Li-S batteries. We analyzed the impact of the material's structural design on the performance of Li-S batteries and the relative underlying mechanism. Finally, the current challenges and issues faced by carbon-based nanofibers composites in the application of Li-S batteries are summarized, and the future development trajectory are outlined.

17.
BMC Cancer ; 24(1): 950, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095737

RESUMO

OBJECTIVE: To investigate the impact of response to induction chemotherapy (IC) on survival outcomes in patients with locally advanced nasopharyngeal carcinoma (LANPC) and evaluate the efficacy of adding nimotuzumab to concurrent chemoradiotherapy (CCRT) based on different responses to IC. METHODS: We retrospectively included patients with stage III-IVA NPC who underwent IC with and without nimotuzumab during CCRT. Statistical analysis included the chi-square test, propensity score matching, Kaplan-Meier survival analysis, and Cox proportional hazards model. RESULTS: Among 383 identified patients, 216 (56.4%) received nimotuzumab during CCRT, while 167 (43.6%) did not. Following IC, 269 (70.2%) patients showed a complete response (CR) or partial response (PR), and 114 (29.8%) had stable disease (SD) or progressive disease (PD). The response to IC independently influenced disease-free survival (DFS) and overall survival (OS). Patients achieving CR/PR demonstrated significantly higher 3-year DFS (80.3% vs. 70.6%, P = 0.031) and OS (90.9% vs. 83.2%, P = 0.038) than those with SD/PD. The addition of nimotuzumab during CCRT significantly improved DFS (P = 0.006) and OS (P = 0.037) for CR/PR patients but not for those with SD/PD. CONCLUSIONS: This study emphasizes the importance of IC response in LANPC and highlights the potential benefits of nimotuzumab during CCRT for improving survival outcomes in CR/PR patients. Tailored treatment approaches for SD/PD patients warrant further investigation.


Assuntos
Anticorpos Monoclonais Humanizados , Quimiorradioterapia , Quimioterapia de Indução , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Masculino , Feminino , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Quimiorradioterapia/métodos , Quimioterapia de Indução/métodos , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Estudos Retrospectivos , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Adulto , Idoso , Estadiamento de Neoplasias , Resultado do Tratamento , Estimativa de Kaplan-Meier , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Intervalo Livre de Doença , Adulto Jovem
18.
J Magn Reson Imaging ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996369

RESUMO

BACKGROUND: Turbo spin-echo (TSE) diffusion-weighted imaging (DWI) sequences may reduce susceptibility artifacts and image distortion in sellar region, allowing better visualization of small pituitary lesions, and may be used to assist in the diagnosis of pituitary microadenomas. PURPOSE: To explore the application value of conventional MRI combined with DWI sequences in the diagnosis of microprolactinomas. STUDY TYPE: Prospective. POPULATION: Thirty-four patients in microprolactinomas with high signal on T2WI (HT2-PRL) group (34 females, 34 ± 7 years), 26 patients in microprolactinomas with equal or low signal on T2WI (ELT2-PRL) group (21 females, 34 ± 7 years), 35 patients with hyperprolactinemia (33 females, 32 ± 8 years), and 30 normal controls (25 females, 31 ± 7 years). FIELD STRENGTH/SEQUENCE: TSE sequence at 3 T. ASSESSMENT: Pituitary morphological parameters (such as length and volume), dynamic contrast-enhanced parameters (such as time to peak) and the apparent diffusion coefficients (ADCs) were measured in each group. STATISTICAL TESTS: ANOVA and Mann-Whitney U test were used to compare parameters among groups. Spearman's coefficient was used to evaluate the correlation between variables. ROC analysis was used to assess the performance of the parameters. A P-value <0.05 was considered statistically significant. RESULTS: The pituitary volume of patients in HT2-PRL, ELT2-PRL, and hyperprolactinemia group were 831.00 (747.60, 887.60), 923.63 ± 219.34, and 737.20 (606.40, 836.80) mm3. The pituitary maximum height in these three groups were 7.03 (6.43, 8.63), 8.03 ± 1.41, and 6.63 ± 1.28 mm, respectively. The lesion ADC value was significantly correlated with T2 relative signal intensity (the ratio of signal intensity of microprolactinoma or anterior pituitary to left temporal cortex) (r = 0.821). Compared with patients with hyperprolactinemia, the diagnostic efficacy of T2 relative signal intensity was higher in HT2-PRL group, with an AUC of 0.954, whereas the ADC value was the highest in ELT2-PRL group, with an AUC of 0.924. CONCLUSION: DWI sequences can be used to assist in the diagnosis of pituitary microadenomas. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

19.
Theor Appl Genet ; 137(3): 55, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386094

RESUMO

KEY MESSAGE: The first single dominant resistance gene contributing major resistance to the oomycete pathogen Phytophthora sansomeana was identified and mapped from soybean 'Colfax'. Phytophthora root rot (PRR) is one of the most important diseases in soybean (Glycine max). PRR is well known to be caused by Phytophthora sojae, but recent studies showed that P. sansomeana also causes extensive root rot of soybean. Depending upon the isolate, it might produce aggressive symptoms, especially in seeds and seedlings. Unlike P. sojae which can be effectively managed by Rps genes, no known major resistance genes have yet been reported for P. sansomeana. Our previous study screened 470 soybean germplasm lines for resistance to P. sansomeana and found that soybean 'Colfax' (PI 573008) carries major resistance to the pathogen. In this study, we crossed 'Colfax' with a susceptible parent, 'Senaki', and developed three mapping populations with a total of 234 F2:3 families. Inheritance pattern analysis indicated a 1:2:1 ratio for resistant: segregating: susceptible lines among all the three populations, indicating a single dominant gene conferring the resistance in 'Colfax' (designated as Rpsan1). Linkage analysis using extreme phenotypes anchored Rpsan1 to a 30 Mb region on chromosome 3. By selecting nine polymorphic SNP markers within the region, Rpsan1 was genetically delimited into a 21.3 cM region between Gm03_4487138_A_C and Gm03_5451606_A_C, which corresponds to a 1.06 Mb genomic region containing nine NBS-LRR genes based on Gmax2.0 assembly. The mapping results were then validated using two breeding populations derived from 'E12076T-03' × 'Colfax' and 'E16099' × 'Colfax'. Marker-assisted resistance spectrum analyses with 9 additional isolates of P. sansomeana indicated that Rpsan1 may be effective towards a broader range of P. sansomeana isolates and has strong merit in protecting soybean to this pathogen in the future.


Assuntos
Glycine max , Phytophthora , Humanos , Glycine max/genética , Melhoramento Vegetal , Genes Dominantes , Genômica
20.
Langmuir ; 40(17): 8921-8938, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626327

RESUMO

In this work, a trimetallic (Ni/Co/Zn) organic framework (tMOF), synthesized by a solvothermal method, was calcinated at 400 and 600 °C and the final products were used as a support for lipase immobilization. The material annealed at 400 °C (Ni-Co-Zn@400) had an improved surface area (66.01 m2/g) and pore volume (0.194 cm3/g), which showed the highest enzyme loading capacity (301 mg/g) with a specific activity of 0.196 U/mg, and could protect the enzyme against thermal denaturation at 65 °C. The optimal pH and temperature for the lipase were 8.0 and 45 °C but could tolerate pH levels 7.0-8.0 and temperatures 40-60 °C. Moreover, the immobilized enzyme (Ni-Co-Zn@Lipase, Ni-Co-Zn@400@Lipase, or Ni-Co-Zn@600@Lipase) could be recovered and reused for over seven cycles maintaining 80, 90, and 11% of its original activity and maintained a residual activity >90% after 40 storage days. The remarkable thermostability and storage stability of the immobilized lipase suggest that the rigid structure of the support acted as a protective shield against denaturation, while the improved pH tolerance toward the alkaline range indicates a shift in the ionization state attributed to unequal partitioning of hydroxyl and hydrogen ions within the microenvironment of the active site, suggesting that acidic residues may have been involved in forming an enzyme-support bond. The high enzyme loading capacity, specific activity, encouraging stability, and high recoverability of the tMOF@Lipase indicate that a multimetallic MOF could be a better platform for efficient enzyme immobilization.


Assuntos
Enzimas Imobilizadas , Lipase , Nanocompostos , Zinco , Lipase/química , Lipase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanocompostos/química , Concentração de Íons de Hidrogênio , Zinco/química , Estabilidade Enzimática , Temperatura , Cobalto/química , Níquel/química , Ligas/química , Estruturas Metalorgânicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA