Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(28): 11112-11120, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395531

RESUMO

Recent decades have witnessed a major development in broadband near-infrared (NIR)-emitting phosphors because of their potential applications in real-time nondestructive examination. These applications require the emission spectra of phosphors to be as broad as possible for efficient performance. Therefore, a blue-light excited LiInF4: Cr3+ phosphor with a NIR emission covering 700-1400 nm is successfully synthesized. Under 470 nm excitation, it shows broadband emission peaked at 980 nm with the full-width at half maximum of 210 nm. The structure and crystal field environment are investigated in detail, and the LiInF4: Cr3+ possesses a weak crystal field strength and strong electron-phonon coupling. An efficient NIR phosphor-converted light-emitting diode (pc-LED) is fabricated by the prepared LiInF4: Cr3+ phosphor and commercial blue diode chip, generating a NIR radiant flux of 5.54 mW at 150 mA drive current. Finally, the NIR pc-LED is successfully applied to identify the blood vessel distribution of the hand. This work suggests the potential of LiInF4: Cr3+ phosphor in applications.

2.
Inorg Chem ; 62(24): 9518-9527, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37269358

RESUMO

Thermal quenching (TQ) is still a critical challenge for lanthanide (Ln3+)-doped luminescent materials. Herein, we report the novel negative thermal expansion nonhygroscopic phosphor ZrSc(WO4)2PO4:Yb3+/Er3+. Upon excitation with a 980 nm laser, a simultaneous thermal enhancement is realized on upconversion (UC) and downshifting (DS) emissions from room temperature to 573 K. In situ temperature-dependent X-ray diffraction and photoluminescence dynamics are used to reveal the luminescence mechanism in detail. The coexistence of the high energy transfer efficiency and the promoted radiative transition probability can be responsible for the thermally enhanced luminescence. On the basis of the luminescence intensity ratio of thermally coupled energy levels 2H11/2 and 4S3/2 at different temperatures, the relative and absolute sensitivities of the targeted samples reach 1.10% K-1 and 1.21% K-1, respectively, and the low-temperature uncertainty is approximately 0.1-0.4 K on the whole temperature with a high repeatability (98%). Our findings highlight a general approach for designing a hygro-stable, thermostable, and highly efficient Ln3+-doped phosphor with UC and DS luminescence.

3.
Nano Lett ; 22(7): 2793-2800, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35324206

RESUMO

Conventional biomedical imaging modalities, including endoscopy, X-rays, and magnetic resonance, are invasive and insufficient in spatial and temporal resolutions for gastrointestinal (GI) tract imaging to guide prognosis and therapy. Here we report a noninvasive method based on lanthanide-doped nanocrystals with ∼1530 nm fluorescence in the near-infrared-IIb window (NIR-IIb, 1500-1700 nm). The rational design of nanocrystals have led to an absolute quantum yield (QY) up to 48.6%. Further benefiting from the minimized scattering through the NIR-IIb window, we enhanced the spatial resolution to ∼1 mm in GI tract imaging, which is ∼3 times higher compared with the near-infrared-IIa (NIR-IIa, 1000-1500 nm) method. The approach also realized a high temporal resolution of 8 frames per second; thus the moment of mice intestinal peristalsis can be captured. Furthermore, with a light-sheet imaging system, we demonstrated a three-dimensional (3D) imaging on the GI tract. Moreover, we successfully translated these advances to diagnose inflammatory bowel disease.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Animais , Trato Gastrointestinal/diagnóstico por imagem , Elementos da Série dos Lantanídeos/química , Camundongos , Nanopartículas/química , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
4.
Nanotechnology ; 32(37)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34102619

RESUMO

For decades, problems of parasitic emissions have been ubiquitously encountered in nearly all deep ultraviolet light-emitting diodes (DUV-LEDs). In this work, 450 nm parasitic peaks in 275 nm AlGaN DUV-LEDs have been studied in details. Upon careful comparisons and analyses on the electroluminescence and photoluminescence spectra at various injection levels and different temperatures, we have discovered a mechanism of exciton-assisted radiative recombination, namely, the reinforcement on radiative recombination via other impurity-trap levels (ITLs) by excitons that are generated in the midst of the band gap. For DUV-LED samples under investigation herein, a system of radiative ITLs within the band gap cannot be neglected. It includes two types of impurities located at two different energy levels, 3.80 eV and 2.75 eV, respectively. The former, establishing a sub-band edge, which behaves like an energy entrance to this system, contains a series of hydrogen-like excitons at a temperature lower than 100 K, which behaves like an energy entrance to this system. On the one hand, these excitons absorb carriers from band-edge and reduce the band-edge recombination. On the other hand they transfer the energy to lower impurity levels, enhancing the radiative recombination and giving rise to the 450 nm parasitic peak.

5.
Adv Mater ; 36(26): e2401724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575151

RESUMO

Simultaneously achieving a high photoluminescence quantum yield (PLQY), ultrashort exciton lifetime, and suppressed concentration quenching in thermally activated delayed fluorescence (TADF) materials is desirable yet challenging. Here, a novel acceptor-donor-acceptor type TADF emitter, namely, 2BO-sQA, wherein two oxygen-bridged triarylboron (BO) acceptors are arranged with cofacial alignment and positioned nearly orthogonal to the rigid dispirofluorene-quinolinoacridine (sQA) donor is reported. This molecular design enables the compound to achieve highly efficient (PLQYs up to 99%) and short-lived (nanosecond-scale) blue TADF with effectively suppressed concentration quenching in films. Consequently, the doped organic light-emitting diodes (OLEDs) base on 2BO-sQA achieve exceptional electroluminescence performance across a broad range of doping concentrations, maintaining maximum external quantum efficiencies (EQEs) at over 30% for doping concentrations ranging from 10 to 70 wt%. Remarkably, the nondoped blue OLED achieves a record-high maximum EQE of 26.6% with a small efficiency roll-off of 14.0% at 1000 candelas per square meter. By using 2BO-sQA as the sensitizer for the multiresonance TADF emitter ν-DABNA, TADF-sensitized fluorescence OLEDs achieve high-efficiency deep-blue emission. These results demonstrate the feasibility of this molecular design in developing TADF emitters with high efficiency, ultrashort exciton lifetime, and minimal concentration quenching.

6.
Dis Colon Rectum ; 56(1): 83-90, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222284

RESUMO

BACKGROUND: Comprehensive analyses are lacking to identify predictors of postoperative complications in patients who undergo a Hartmann reversal. OBJECTIVE: The aim of this study is to identify predictive factors for morbidity after reversal. DESIGN: This study is a retrospective review of prospectively collected data. SETTINGS: The study was conducted at Cleveland Clinic Florida. PATIENTS: Consecutive patients from January 2004 to July 2011 who underwent reversal were included. MAIN OUTCOME MEASURES: Variables pertaining to Hartmann procedure and reversal were obtained for analyses in patients with and without postoperative complications. Univariate and multivariate analyses were performed. RESULTS: A total of 95 patients (mean age 61 years, 56% male) underwent reversal, with an overall morbidity of 46%. Patients with and without complications had similar demographics, comorbidities, diagnoses, and Hartmann procedure intraoperative findings. Patients with complications after reversal were more likely to have prophylactic ureteral stents (61% vs 41%, p < 0.05) and an open approach (91% vs 75%, p < 0.04). Complications were associated with longer hospital stay (8.8 vs 6.9 days,p < 0.006) and higher rates of reintervention (9% vs 0%, p < 0.03) and readmission (16% vs 2%, p < 0.02). Predictors of morbidity after reversal included BMI (29 vs 26 kg/m, p < 0.04), hospital stay for Hartmann procedure (15 vs 10 days, p < 0.03), and short distal stump (50% vs 31%, p < 0.05). BMI was the only independent predictor of morbidity (p < 0.04). Obesity was associated with significantly greater overall morbidity (64% vs 40%, p < 0.04), wound infections (56% vs 31%, p < 0.04), diverting ileostomy at reversal (24% vs 13%, p < 0.05), and time between procedures (399 vs 269 days, p < 0.02). LIMITATIONS: This study was limited by its retrospective design. CONCLUSIONS: Hartmann reversal is associated with significant morbidity; BMI independently predicts complications. Therefore, patients who are obese should be encouraged or even potentially required to lose weight before reversal.


Assuntos
Colectomia , Neoplasias do Colo/cirurgia , Colostomia , Diverticulite/cirurgia , Obesidade/epidemiologia , Complicações Pós-Operatórias , Índice de Massa Corporal , Colectomia/efeitos adversos , Colectomia/métodos , Colectomia/estatística & dados numéricos , Neoplasias do Colo/epidemiologia , Colostomia/efeitos adversos , Colostomia/métodos , Colostomia/estatística & dados numéricos , Comorbidade , Diverticulite/epidemiologia , Feminino , Florida/epidemiologia , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Avaliação de Processos e Resultados em Cuidados de Saúde , Readmissão do Paciente/estatística & dados numéricos , Complicações Pós-Operatórias/classificação , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Reoperação/estatística & dados numéricos , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida , Resultado do Tratamento
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123053, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37393668

RESUMO

The partially and equivalent substitution of La + Mg â†’ Sr + Al in SrAl12O19 lattice is an effective strategy to provide trivalent sites, reduce the site occupation splitting of Al and stabilize the entire lattice. When excited by 397 nm, the Eu3+ activated La, Mg:SrAl12O19 (ASL) phosphor shows intense linear emission through the 5D0→7F4 transition at 707 nm when compared with SrAl12O19:Eu3+. Especially, the Eu, Mg co-doped Sr1-xLaxMgxAl12-xO19 with certain amount of x = 1/3 exhibits the significant intense photoluminescence, which was demonstrated through a lattice evolutional model. Eu2+ in the host with 1/3 ratio of (La, Mg) substitution shows broad blue emission and as short fluorescence lifetime as 248 ns. The temperature-depended fluorescence quenching behavior confirms the essence of strong electric-phonon coupling originated from distorted and polarized crystal field around Eu2+/Sr2+ site. Basing on site regulation of SrAl12O19 matrix, our study provides a reference for exploration on efficient rare earth ions activated luminescent laser or scintillation materials.

8.
Research (Wash D C) ; 6: 0155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250955

RESUMO

Thermally activated delayed fluorescence (TADF) materials with both high photoluminescence quantum yield (PLQY) and fast reverse intersystem crossing (RISC) are strongly desired to realize efficient and stable organic light-emitting diodes (OLEDs). Control of excited-state dynamics via molecular design plays a central role in optimizing the PLQY and RISC rate of TADF materials but remains challenging. Here, 3 TADF emitters possessing similar molecular structures, similar high PLQYs (89.5% to 96.3%), and approximate energy levels of the lowest excited singlet states (S1), but significantly different spin-flipping RISC rates (0.03 × 106 s-1 vs. 2.26 × 106 s-1) and exciton lifetime (297.1 to 332.8 µs vs. 6.0 µs) were systematically synthesized to deeply investigate the feasibility of spin-flip between charge-transfer excited states (3CT-1CT) transition. Experimental and theoretical studies reveal that the small singlet-triplet energy gap together with low RISC reorganization energy between the 3CT and 1CT states could provide an efficient RISC through fast spin-flip 3CT-1CT transition, without the participation of an intermediate locally excited state, which has previously been recognized as being necessary for realizing fast RISC. Finally, the OLED based on the champion TADF emitter achieves a maximum external quantum efficiency of 27.1%, a tiny efficiency roll-off of 4.1% at 1,000 cd/m2, and a high luminance of 28,150 cd/m2, which are markedly superior to those of the OLEDs employing the other 2 TADF emitters.

9.
Adv Sci (Weinh) ; 10(23): e2300808, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37279379

RESUMO

The development of orange-red/red thermally activated delayed fluorescence (TADF) materials with both high emission efficiencies and short lifetimes is highly desirable for electroluminescence (EL) applications, but remains a formidable challenge owing to the strict molecular design principles. Herein, two new orange-red/red TADF emitters, namely AC-PCNCF3 and TAC-PCNCF3, composed of pyridine-3,5-dicarbonitrile-derived electron-acceptor (PCNCF3) and acridine electron-donors (AC/TAC) are developed. These emitters in doped films exhibit excellent photophysical properties, including high photoluminescence quantum yields of up to 0.91, tiny singlet-triplet energy gaps of 0.01 eV, and ultrashort TADF lifetimes of less than 1 µs. The TADF-organic light-emitting diodes employing the AC-PCNCF3 as emitter achieve orange-red and red EL with high external quantum efficiencies of up to 25.0% and nearly 20% at doping concentrations of 5 and 40 wt%, respectively, both accompanied by well-suppressed efficiency roll-offs. This work provides an efficient molecular design strategy for developing high-performance red TADF materials.

10.
ACS Appl Mater Interfaces ; 15(25): 30543-30552, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37315213

RESUMO

The development of highly efficient orange and red thermally activated delayed fluorescence (TADF) materials for constructing full-color and white organic light-emitting diodes (OLEDs) remains insufficient because of the formidable challenges in molecular design, such as the severe radiationless decay and the intrinsic trade-off between the efficiencies of radiative decay and reverse intersystem crossing (RISC). Herein, we design two high-efficiency orange and orange-red TADF molecules by constructing intermolecular noncovalent interactions. This strategy could not only ensure high emission efficiency via suppression of the nonradiative relaxation and enhancement of the radiative transition but also create intermediate triplet excited states to ensure the RISC process. Both emitters exhibit typical TADF characteristics, with a fast radiative rate and a low nonradiative rate. Photoluminescence quantum yields (PLQYs) of the orange (TPA-PT) and orange-red (DMAC-PT) materials reach up to 94 and 87%, respectively. Benefiting from the excellent photophysical properties and stability, OLEDs based on these TADF emitters realize orange to orange-red electroluminescence with high external quantum efficiencies reaching 26.2%. The current study demonstrates that the introduction of intermolecular noncovalent interactions is a feasible strategy for designing highly efficient orange to red TADF materials.

11.
Am J Epidemiol ; 175(6): 584-93, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22328705

RESUMO

No prediction rule is currently available for advanced colorectal neoplasms, defined as invasive cancer, an adenoma of 10 mm or more, a villous adenoma, or an adenoma with high-grade dysplasia, in average-risk Chinese. In this study between 2006 and 2008, a total of 7,541 average-risk Chinese persons aged 40 years or older who had complete colonoscopy were included. The derivation and validation cohorts consisted of 5,229 and 2,312 persons, respectively. A prediction rule was developed from a logistic regression model and then internally and externally validated. The prediction rule comprised 8 variables (age, sex, smoking, diabetes mellitus, green vegetables, pickled food, fried food, and white meat), with scores ranging from 0 to 14. Among the participants with low-risk (≤3) or high-risk (>3) scores in the validation cohort, the risks of advanced neoplasms were 2.6% and 10.0% (P < 0.001), respectively. If colonoscopy was used only for persons with high risk, 80.3% of persons with advanced neoplasms would be detected while the number of colonoscopies would be reduced by 49.2%. The prediction rule had good discrimination (area under the receiver operating characteristic curve = 0.74, 95% confidence interval: 0.70, 0.78) and calibration (P = 0.77) and, thus, provides accurate risk stratification for advanced neoplasms in average-risk Chinese.


Assuntos
Adenoma , Colonoscopia , Neoplasias Colorretais , Técnicas de Apoio para a Decisão , Detecção Precoce de Câncer , Adenoma/diagnóstico , Adenoma/etiologia , Adulto , Fatores Etários , Idoso , China , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/etiologia , Estudos Transversais , Feminino , Humanos , Modelos Logísticos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Curva ROC , Medição de Risco , Fatores Sexuais , Inquéritos e Questionários
12.
Nat Commun ; 13(1): 2090, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440128

RESUMO

Rare earth (RE3+)-doped phosphors generally suffer from thermal quenching, in which their photoluminescence (PL) intensities decrease at high temperatures. Herein, we report a class of unique two-dimensional negative-thermal-expansion phosphor of Sc2(MoO4)3:Yb/Er. By virtue of the reduced distances between sensitizers and emitters as well as confined energy migration with increasing the temperature, a 45-fold enhancement of green upconversion (UC) luminescence and a 450-fold enhancement of near-infrared downshifting (DS) luminescence of Er3+ are achieved upon raising the temperature from 298 to 773 K. The thermally boosted UC and DS luminescence mechanism is systematically investigated through in situ temperature-dependent Raman spectroscopy, synchrotron X-ray diffraction and PL dynamics. Moreover, the luminescence lifetime of 4I13/2 of Er3+ in Sc2(MoO4)3:Yb/Er displays a strong temperature dependence, enabling luminescence thermometry with the highest relative sensitivity of 12.3%/K at 298 K and low temperature uncertainty of 0.11 K at 623 K. These findings may gain a vital insight into the design of negative-thermal-expansion RE3+-doped phosphors for versatile applications.

13.
ACS Appl Mater Interfaces ; 13(39): 46909-46918, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34550667

RESUMO

Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 µs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.

14.
Adv Sci (Weinh) ; 8(19): e2100084, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382362

RESUMO

Understanding the origin of temperature-dependent bandgap in inorganic lead-halide perovskites is essential and important for their applications in photovoltaics and optoelectronics. Herein, it is found that the temperature dependence of bandgap in CsPbBr3 perovskites is variable with material dimensionality. In contrast to the monotonous redshift ordinarily observed in bulk-like CsPbBr3 nanocrystals (NCs), the bandgap of 2D CsPbBr3 nanoplatelets (NPLs) exhibits an initial blueshift then redshift trend with decreasing temperature (290-10 K). The Bose-Einstein two-oscillator modeling manifests that the blueshift-redshift crossover of bandgap in the NPLs is attributed to the significantly larger weight of contribution from electron-optical phonon interaction to the bandgap renormalization in the NPLs than in the NCs. These new findings may gain deep insights into the origin of bandgap shift with temperature for both fundamentals and applications of perovskite semiconductor materials.

15.
Light Sci Appl ; 9: 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133125

RESUMO

The launch of the big data era puts forward challenges for information preservation technology, both in storage capacity and security. Herein, a brand new optical storage medium, transparent glass ceramic (TGC) embedded with photostimulated LiGa5O8: Mn2+ nanocrystals, capable of achieving bit-by-bit optical data write-in and read-out in a photon trapping/detrapping mode, is developed. The highly ordered nanostructure enables light-matter interaction with high encoding/decoding resolution and low bit error rate. Importantly, going beyond traditional 2D optical storage, the high transparency of the studied bulk medium makes 3D volumetric optical data storage (ODS) possible, which brings about the merits of expanded storage capacity and improved information security. Demonstration application confirmed the erasable-rewritable 3D storage of binary data and display items in TGC with intensity/wavelength multiplexing. The present work highlights a great leap in photostimulated material for ODS application and hopefully stimulates the development of new multi-dimensional ODS media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA