Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Genomics ; 24(1): 203, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069497

RESUMO

The freshwater leech Whitmania pigra (W. pigra) Whitman (Annelida phylum) is a model organism for neurodevelopmental studies. However, molecular biology research on its embryonic development is still scarce. Here, we described a series of developmental stages of the W. pigra embryos and defined five broad stages of embryogenesis: cleavage stages, blastocyst stage, gastrula stage, organogenesis and refinement, juvenile. We obtained a total of 239.64 Gb transcriptome data of eight representative developmental phases of embryos (from blastocyst stage to maturity), which was then assembled into 21,482 unigenes according to our reference genome sequenced by single-molecule real-time (SMRT) long-read sequencing. We found 3114 genes differentially expressed during the eight phases with phase-specific expression pattern. Using a comprehensive transcriptome dataset, we demonstrated that 57, 49 and 77 DEGs were respectively related to morphogenesis, signal pathways and neurogenesis. 49 DEGs related to signal pathways included 30 wnt genes, 14 notch genes, and 5 hedgehog genes. In particular, we found a cluster consisting of 7 genes related to signal pathways as well as synapses, which were essential for regulating embryonic development. Eight genes cooperatively participated in regulating neurogenesis. Our results reveal the whole picture of W. pigra development mechanism from the perspective of transcriptome and provide new clues for organogenesis and neurodevelopmental studies of Annelida species.


Assuntos
Proteínas Hedgehog , Sanguessugas , Animais , Água Doce , Perfilação da Expressão Gênica , Proteínas Hedgehog/genética , Sanguessugas/genética , Sanguessugas/crescimento & desenvolvimento , Neurogênese , Transcriptoma , Embrião não Mamífero/metabolismo
2.
J Cell Physiol ; 236(9): 6344-6361, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33521982

RESUMO

Melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), two neural G protein-coupled receptors are known to be functionally critical for energy balance in vertebrates. As allosteric regulators of melanocortin receptors, melanocortin accessory proteins (MRAPs) are also involved in energy homeostasis. The interaction of MRAPs and melanocortin signaling was previously shown in mammals and zebrafish, but nothing had been reported in amphibians. As the basal class of tetrapods, amphibians occupy a phylogenetic transition between teleosts and terrestrial animals. Here we examined the evolutionary conservation of MC3R, MC4R, and MRAPs between diploid Xenopus tropicalis (xt-) and other chordates and investigated the pharmacological regulatory properties of MRAPs on the neural MC3R and MC4R signaling. Our results showed that xtMRAP and xtMRAP2 both exerted robust potentiation effect on agonist (α-MSH and adrenocorticotropin [ACTH]) induced activation and modulated the basal activity and cell surface translocation of xtMC3R and xtMC4R. In addition, the presence of two accessory proteins could convert xtMC3R and xtMC4R into ACTH-preferred receptors. These findings suggest that the presence of MRAPs exhibits fine control over the pharmacological activities of the neuronal MC3R and MC4R signaling in the Xenopus tropicalis, which is physiologically relevant with the complicated transition of feeding behaviors during their life history.


Assuntos
Melanocortinas/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Sequência de Aminoácidos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cromossomos/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Filogenia , Ligação Proteica/efeitos dos fármacos , Receptores de Melanocortina/química , Receptores de Melanocortina/metabolismo , Sintenia/genética , Distribuição Tecidual , Xenopus/genética , Proteínas de Xenopus/química , alfa-MSH/farmacologia
3.
J Cell Physiol ; 236(8): 5980-5993, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33501674

RESUMO

Physiological modulation of melanocortin-4 receptor (MC4R) signaling by MRAP2 proteins plays an indispensable role in appetite control and energy homeostasis in the central nervous system. Great interspecies differences of the interaction and regulation of melanocortin receptors by MRAP protein family have been reported in several diploid vertebrates but never been investigated in the tetrapod amphibian Xenopus laevis. Here, we performed phylogenetic and synteny-based analyses to explore the evolutionary aspects of dual copies of X. laevis MC4R (xlMC4R) and MRAP2 (xlMRAP2) proteins. Our data showed that xlMRAPs directly interacted with xlMC4Rs on the cell surface as a functional antiparallel dimeric topology and pharmacological studies suggested a homology specific regulatory pattern of the melanocortin system in X. laevis.


Assuntos
Melanocortinas/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Xenopus laevis/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Regulação do Apetite/fisiologia , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Homeostase/fisiologia , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais/fisiologia
4.
Development ; 144(20): 3674-3685, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29042477

RESUMO

Neurog2 is a crucial regulator of neuronal fate specification and differentiation in vivo and in vitro However, it remains unclear how Neurog2 transactivates neuronal genes that are silenced by repressive chromatin. Here, we provide evidence that the histone H3 lysine 9 demethylase KDM3A facilitates the Xenopus Neurog2 (formerly known as Xngnr1) chromatin accessibility during neuronal transcription. Loss-of-function analyses reveal that KDM3A is not required for the transition of naive ectoderm to neural progenitor cells but is essential for primary neuron formation. ChIP series followed by qPCR analyses reveal that Neurog2 promotes the removal of the repressive H3K9me2 marks and addition of active histone marks, including H3K27ac and H3K4me3, at the NeuroD1 and Tubb2b promoters; this activity depends on the presence of KDM3A because Neurog2, via its C-terminal domain, interacts with KDM3A. Interestingly, KDM3A is dispensable for the neuronal transcription initiated by Ascl1, a proneural factor related to neurogenin in the bHLH family. In summary, our findings uncover a crucial role for histone H3K9 demethylation during Neurog2-mediated neuronal transcription and help in the understanding of the different activities of Neurog2 and Ascl1 in initiating neuronal development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Ectoderma/metabolismo , Feminino , Lisina/química , Neurogênese , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ativação Transcricional , Xenopus laevis
5.
Wound Repair Regen ; 26(1): 46-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453851

RESUMO

The ontogenetic decline of regeneration capacity in the anuran amphibian Xenopus makes it an excellent model for regeneration studies. However, the cause of the regeneration ability decline is not fully understood. MicroRNAs regulate animal development and have been indicated in various regeneration situations. However, little is known about the role of microRNAs during limb regeneration in Xenopus. This study investigates the effect of Dicer, an enzyme responsible for microRNA maturation, on limb development and regeneration in Xenopus. Dicer is expressed in the developing Xenopus limbs and is up-regulated after limb amputation during both regeneration-competent and regeneration-deficient stages of tadpole development. Inactivation of Dicer in early (NF stage 53) tadpole limb buds leads to shorter tibulare/fibulare formation but does not affect limb regeneration. However, in late-stage, regeneration-deficient tadpole limbs (NF stage 57), Dicer inactivation restores the regeneration blastema and stimulates limb regeneration. Thus, our results demonstrated that Xenopus limb regeneration can be stimulated by the inactivation of Dicer in nonregenerating tadpoles, indicating that microRNAs present in late-stage tadpole limbs may be involved in the ontogenetic decline of limb regeneration in Xenopus.


Assuntos
Amputação Cirúrgica/métodos , Larva/fisiologia , MicroRNAs/genética , Morfolinos/metabolismo , Regeneração/genética , Animais , RNA Helicases DEAD-box/genética , Membro Posterior/cirurgia , MicroRNAs/metabolismo , Modelos Animais , Morfolinos/genética , Regeneração/fisiologia , Ribonuclease III/genética , Sensibilidade e Especificidade , Xenopus laevis
6.
J Neurosci ; 35(10): 4366-85, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762681

RESUMO

Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (Vmem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (Vmem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between Vmem and key biochemical pathways (Notch and Ca(2+) signaling) as the molecular mechanism by which spatial differences of Vmem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects.


Assuntos
Padronização Corporal/fisiologia , Proliferação de Células/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fatores Etários , Animais , Padronização Corporal/genética , Cálcio/metabolismo , Embrião não Mamífero , Corantes Fluorescentes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Potenciais da Membrana/genética , Microinjeções , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/citologia , Tubo Neural/embriologia , Receptores Notch/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética , Xenopus laevis
7.
Dev Biol ; 389(2): 208-18, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24583263

RESUMO

Regulatory mechanisms that govern lineage specification of the mesodermal progenitors to become endothelial and hematopoietic cells remain an area of intense interest. Both Ets and Gata factors have been shown to have important roles in the transcriptional regulation in endothelial and hematopoietic cells. We previously reported Etv2 as an essential regulator of vasculogenesis and hematopoiesis. In the present study, we demonstrate that Gata2 is co-expressed and interacts with Etv2 in the endothelial and hematopoietic cells in the early stages of embryogenesis. Our studies reveal that Etv2 interacts with Gata2 in vitro and in vivo. The protein-protein interaction between Etv2 and Gata2 is mediated by the Ets and Gata domains. Using the embryoid body differentiation system, we demonstrate that co-expression of Gata2 augments the activity of Etv2 in promoting endothelial and hematopoietic lineage differentiation. We also identify Spi1 as a common downstream target gene of Etv2 and Gata2. We provide evidence that Etv2 and Gata2 bind to the Spi1 promoter in vitro and in vivo. In summary, we propose that Gata2 functions as a cofactor of Etv2 in the transcriptional regulation of mesodermal progenitors during embryogenesis.


Assuntos
Linhagem da Célula , Células Endoteliais/citologia , Fator de Transcrição GATA2/metabolismo , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Fator de Transcrição GATA2/química , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/química , Ativação Transcricional/genética
8.
Cell Rep ; 42(10): 113308, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858462

RESUMO

The RNA-binding protein Musashi-1 (MSI1) regulates the proliferation and differentiation of adult stem cells. However, its role in embryonic stem cells (ESCs) and early embryonic development remains poorly understood. Here, we report the presence of short C-terminal MSI1 (MSI1-C) proteins in early mouse embryos and mouse ESCs, but not in human ESCs, under conventional culture conditions. In mouse embryos and mESCs, deletion of MSI1-C together with full-length MSI1 causes early embryonic developmental arrest and pluripotency dissolution. MSI1-C is induced upon naive induction and facilitates hESC naive pluripotency acquisition, elevating the pluripotency of primed hESCs toward a formative-like state. MSI1-C proteins are nuclear localized and bind to RNAs involved in DNA-damage repair (including MLH1, BRCA1, and MSH2), conferring on hESCs better survival in human-mouse interspecies cell competition and prolonged ability to form blastoids. This study identifies MSI1-C as an essential regulator in ESC pluripotency states and early embryonic development.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Humanas , Animais , Humanos , Camundongos , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Prog Neurobiol ; 227: 102467, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257680

RESUMO

Spinal cord injury (SCI) leads to mental abnormalities such as dementia and depression; however, the molecular mechanism of SCI-induced dementia remains a matter of debate. Asparagine endopeptidase (AEP) mediated dementia by enhancing amyloid plaque and Tau hyperphosphorylation, indicating that it played an important role in neurodegeneration. Here we revealed that SCI stimulated AEP activation in mice with T9 contusion injury. Activated-AEP cleaved APP and Tau, resulting in APP C586 and Tau N368 formations, and consequentially accelerated Aß deposit and Tau hyperphosphorylation, respectively. At 9 months following injury, mice demonstrated a severe deterioration in cognitive-behavioral function, which was corroborated by the presence of accumulated AD-specific pathologies. Surprisingly, activated AEP was found in the brains of mice with spinal cord injury. In contrast, AEP knockout reduced SCI-induced neuronal death and neuroinflammation, resulting in cognitive-behavioral restoration. Interestingly, compared to the full-length proteins, truncated Tau N368 and APP C586 were easier to bind to each other. These AEP-processed fragments can not only be induced to pre-formed fibrils, but also amplified their abilities of spreading and neurotoxicity in vitro. Furthermore, as a critical transcription factor of AEP, C/EBPß was activated in injured spinal cord. Elevated C/EBPß level, as well as microglia population and inflammatory cytokines were also noticed in the cortex and hippocampus of SCI mice. These neuroinflammation pathologies were close related to the amount of Tau N368 and APP C586 in brain. Moreover, administration with the AEP-specific inhibitor, compound #11, was shown to decelerate Aß accumulation, tauopathy and C/EBPß level in both spinal cord and brain of SCI mice. Thus, this study highlights the fact that spinal cord injury is a potential risk factor for dementia, as well as the possibility that C/EBPß-AEP axis may play a role in SCI-induced cognitive impairment.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Disfunção Cognitiva , Cisteína Endopeptidases , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/fisiopatologia , Disfunção Cognitiva/etiologia , Animais , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas tau/metabolismo , Demência , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Knockout , Doenças Neuroinflamatórias , Cisteína Endopeptidases/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Feminino
10.
Cell Regen ; 11(1): 37, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258096

RESUMO

Salamanders are excellent models for studying vertebrate brain regeneration, with the promise of developing novel therapies for human brain lesions. Yet the molecular and cellular mechanism of salamander brain regeneration remains largely elusive. The insight into the evolution of complex brain structures that lead to advanced functions in the mammalian brain is also inadequate. With high-resolution single-cell RNA sequencing and spatial transcriptomics, three recent studies have reported the differentiation paths of cells in the salamander telencephalon in the journal Science, bringing both old and new cell types into the focus and shedding light on vertebrate brain evolution, development, and regeneration.

11.
Cell Prolif ; 55(2): e13188, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35050535

RESUMO

OBJECTIVES: Drosophila melanogaster has become an excellent model organism to explore the genetic mechanisms underlying tumour progression. Here, by using well-established Drosophila tumour models, we identified Toll-7 as a novel regulator of tumour growth and invasion. MATERIALS AND METHODS: Transgenic flies and genetic epistasis analysis were used. All flies were raised on a standard cornmeal and agar medium at 25°C unless otherwise indicated. Immunostaining and RT-qPCR were performed by standard procedures. Images were taken by OLYMPUS BX51 microscope and Zeiss LSM 880 confocal microscope. Adobe Photoshop 2020 and Zeiss Zen were used to analyse the images. All results were presented in Scatter plots or Column bar graphs created by GraphPad Prism 8.0. RESULTS: Loss of Toll-7 suppresses RasV12 /lgl-/- -induced tumour growth and invasion, as well as cell polarity disruption-induced invasive cell migration, whereas expression of a constitutively active allele of Toll-7 is sufficient to promote tumorous growth and cell migration. In addition, the Egr-JNK signalling is necessary and sufficient for Toll-7-induced invasive cell migration. Mechanistically, Toll-7 facilitates the endocytosis of Egr, which is known to activate JNK in the early endosomes. Moreover, Toll-7 activates the EGFR-Ras signalling, which cooperates with the Egr-JNK signalling to promote Yki-mediated cell proliferation and tissue overgrowth. Finally, Toll-7 is necessary and sufficient for the proper maintenance of EGFR protein level. CONCLUSIONS: Our findings characterized Toll-7 as a proto-oncogene that promotes tumour growth and invasion in Drosophila, which shed light on the pro-tumour function of mammalian Toll-like receptors (TLRs).


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Proliferação de Células/genética , Sistema de Sinalização das MAP Quinases/genética , Neoplasias/patologia , Animais , Animais Geneticamente Modificados , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais/genética
12.
Front Cell Dev Biol ; 10: 1027666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605717

RESUMO

Amphibians such as salamanders and the African clawed frog Xenopus are great models for regeneration studies because they can fully regenerate their lost organs. While axolotl can regenerate damaged organs throughout its lifetime, Xenopus has a limited regeneration capacity after metamorphosis. The ecotropic viral integrative factor 5 (Evi5) is of great interest because its expression is highly upregulated in the limb blastema of axolotls, but remains unchanged in the fibroblastema of post-metamorphic frogs. Yet, its role in regeneration-competent contexts in Xenopus has not been fully analyzed. Here we show that Evi5 is upregulated in Xenopus tadpoles after limb and tail amputation, as in axolotls. Down-regulation of Evi5 with morpholino antisense oligos (Mo) impairs limb development and limb blastema formation in Xenopus tadpoles. Mechanistically, we show that Evi5 knockdown significantly reduces proliferation of limb blastema cells and causes apoptosis, blocking the formation of regeneration blastema. RNA-sequencing analysis reveals that in addition to reduced PDGFα and TGFß signaling pathways that are required for regeneration, evi5 Mo downregulates lysine demethylases Kdm6b and Kdm7a. And knockdown of Kdm6b or Kdm7a causes defective limb regeneration. Evi5 knockdown also impedes tail regeneration in Xenopus tadpoles and axolotl larvae, suggesting a conserved function of Evi5 in appendage regeneration. Thus, our results demonstrate that Evi5 plays a critical role in appendage regeneration in amphibians.

13.
Open Biol ; 12(3): 210357, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259952

RESUMO

Snail (Sna) plays a pivotal role in epithelia-mesenchymal transition and cancer metastasis, yet its functions in normal tissue development remain elusive. Here, using Drosophila as a model organism, we identified Sna as an essential regulator of Hippo signalling-mediated cell proliferation and tissue growth. First, Sna is necessary and sufficient for impaired Hippo signalling-induced cell proliferation and tissue overgrowth. Second, Sna is necessary and sufficient for the expression of Hippo pathway target genes. Third, genetic epistasis data indicate Sna acts downstream of Yki in the Hippo signalling. Finally, Sna is physiologically required for tissue growth in normal development. Mechanistically, Yki activates the transcription of sna, whose protein product binds to Scalloped (Sd) and promotes Sd-dependent cell proliferation. Thus, this study uncovered a previously unknown physiological function of Sna in normal tissue development and revealed the underlying mechanism by which Sna modulates Hippo signalling-mediated cell proliferation and tissue growth.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proliferação de Células , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia , Transativadores/metabolismo
14.
Front Endocrinol (Lausanne) ; 13: 892407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795143

RESUMO

The melanocortin system consists of five G protein-coupled receptors (MC1R-MC5R), the bidirectional endogenous ligands (MSH and Agouti families), and accessory proteins (MRAP1 and MRAP2). Accumulative studies of vertebrate species find high expression level of melanocortin 1 receptor (MC1R) in the dermal melanocyte and elucidate the essential roles in the skin and fur pigmentation, morphological background adaptation, and stress response. The diploid amphibian Xenopus tropicalis (xt) has been utilized as a fantastic animal model for embryonic development and studies of physiological cryptic colouring and environmental adaptiveness. However, the interaction of xtMc1r signaling with xtMrap proteins has not been assessed yet. In this study, we carried out in silico evolutionary analysis of protein alignment and genetic phylogenetic and genomic synteny of mc1r among various vertebrates. Ubiquitous expression of mrap1 and mrap2 and the co-expression with mc1r transcripts in the skin were clearly observed. Co-immunoprecipitation (ip) and fluorescent complementary approach validated the direct functional interaction of xtMc1r with xtMrap1 or xtMrap2 proteins on the plasma membrane. Pharmacological assay showed the improvement of the constitutive activity and alpha melanocyte-stimulating hormone (α-MSH) stimulated plateau without dramatic alteration of the cell surface translocation of xtMc1r in the presence of xtMrap proteins. Overall, the pharmacological modulation of xtMc1r by dual xtMrap2 proteins elucidated the potential role of this protein complex in the regulation of proper dermal function in amphibian species.


Assuntos
Receptor Tipo 1 de Melanocortina , Transdução de Sinais , Animais , Membrana Celular , Feminino , Filogenia , Xenopus
15.
Front Endocrinol (Lausanne) ; 13: 820896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250878

RESUMO

The Melanocortin-3 receptor (MC3R) and Melanocortin-4 receptor (MC4R), two members of the key hypothalamic neuropeptide signaling, function as complex mediators to control the central appetitive and energy homeostasis. The melanocortin 2 receptor accessory protein 2 (MRAP2) is well-known for its modulation on the trafficking and signaling of MC3R and MC4R in mammals. In this study, we cloned and elucidated the pharmacological profiles of MRAP2 on the regulation of central melanocortin signaling in a relatively primitive poikilotherm amphibian species, the Mexican axolotl (Ambystoma mexicanum). Our results showed the higher conservation of axolotl mc3r and mc4r across species than mrap2, especially the transmembrane regions in these proteins. Phylogenetic analysis indicated that the axolotl MC3R/MC4R clustered closer to their counterparts in the clawed frog, whereas MRAP2 fell in between the reptile and amphibian clade. We also identified a clear co-expression of mc3r, mc4r, and mrap2 along with pomc and agrp in the axolotl brain tissue. In the presence of MRAP2, the pharmacological stimulation of MC3R by α-MSH or ACTH significantly decreased. MRAP2 significantly decreased the cell surface expression of MC4R in a dose dependent manner. The co-localization and formation of the functional complex of axolotl MC3R/MC4R and MRAP2 on the plasma membrane were further confirmed in vitro. Dramatic changes of the expression levels of mc3r, mrap2, pomc, and agrp in the fasting axolotl hypothalamus indicated their critical roles in the metabolic regulation of feeding behavior and energy homeostasis in the poikilotherm aquatic amphibian.


Assuntos
Ambystoma mexicanum , Melanocortinas , Proteína Relacionada com Agouti/genética , Ambystoma mexicanum/metabolismo , Animais , Mamíferos/metabolismo , Melanocortinas/metabolismo , Filogenia , Pró-Opiomelanocortina/genética , Receptor Tipo 2 de Melanocortina
16.
Cell Regen ; 10(1): 19, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33937937

RESUMO

BACKGROUND: Expression of Mc4r in peripheral organs indicates it has broader roles in organ homeostasis and regeneration. However, the expression and function of Mc4r in the mouse limb and digit has not been fully investigated. Our previous work showed that Mc4r-/- mice fail to regenerate the digit, but whether activation of MC4R signaling could rescue digit regeneration, or stimulate proximal digit regeneration is not clear. RESULTS: We analyzed the expression dynamics of Mc4r in the embryonic and postnatal mouse limb and digit using the Mc4r-gfp mice. We found that Mc4r-GFP is mainly expressed in the limb nerves, and in the limb muscles that are undergoing secondary myogenesis. Expression of Mc4r-GFP in the adult mouse digit is restricted to the nail matrix. We also examined the effect of α-MSH on mouse digit regeneration. We found that administration of α-MSH in the Mc4r+/- mice rescue the delayed regeneration of distal digit tip. α-MSH could rescue distal digit regeneration in denervated hindlimbs. In addition, α-MSH could stimulate regeneration of the proximally amputated digit, which is non-regenerative. CONCLUSIONS: Mc4r expression in the mouse limb and digit is closely related to nerve tissues, and α-MSH/MC4R signaling has a neurotrophic role in mouse digit tip regeneration.

17.
Cell Death Discov ; 7(1): 202, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349099

RESUMO

Cancer is one of the most fatal diseases that threaten human health, whereas more than 90% mortality of cancer patients is caused by tumor metastasis, rather than the growth of primary tumors. Thus, how to effectively control or even reverse the migration of tumor cells is of great significance for cancer therapy. CtBP, a transcriptional cofactor displaying high expression in a variety of human cancers, has become one of the main targets for cancer prediction, diagnosis, and treatment. The roles of CtBP in promoting tumorigenesis have been well studied in vitro, mostly based on gain-of-function, while its physiological functions in tumor invasion and the underlying mechanism remain largely elusive. Snail (Sna) is a well-known transcription factor involved in epithelial-to-mesenchymal transition (EMT) and tumor invasion, yet the mechanism that regulates Sna activity has not been fully understood. Using Drosophila as a model organism, we found that depletion of CtBP or snail (sna) suppressed RasV12/lgl-/--triggered tumor growth and invasion, and disrupted cell polarity-induced invasive cell migration. In addition, loss of CtBP inhibits RasV12/Sna-induced tumor invasion and Sna-mediated invasive cell migration. Furthermore, both CtBP and Sna are physiologically required for developmental cell migration during thorax closure. Finally, Sna activates the JNK signaling and promotes JNK-dependent cell invasion. Given that CtBP physically interacts with Sna, our data suggest that CtBP and Sna may form a transcriptional complex that regulates JNK-dependent tumor invasion and cell migration in vivo.

18.
Endocr Connect ; 10(11): 1477-1488, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34678757

RESUMO

As a member of the seven-transmembrane rhodopsin-like G protein-coupled receptor superfamily, the melanocortin-3 receptor (MC3R) is vital for the regulation of energy homeostasis and rhythms synchronizing in mammals, and its pharmacological effect could be directly influenced by the presence of melanocortin receptor accessory proteins (MRAPs), MRAP1 and MRAP2. The tetrapod amphibian Xenopus laevis (xl) retains higher duplicated genome than extant teleosts and serves as an ideal model system for embryonic development and physiological studies. However, the melanocortin system of the Xenopus laevis has not yet been thoroughly evaluated. In this work, we performed sequence alignment, phylogenetic tree, and synteny analysis of two xlMC3Rs. Co-immunoprecipitation and immunofluorescence assay further confirmed the co-localization and in vitro interaction of xlMC3Rs with xlMRAPs on the plasma membrane. Our results demonstrated that xlMRAP2.L/S could improve α-MSH-stimulated xlMC3Rs signaling and suppress their surface expression. Moreover, xlMC3R.L showed a similar profile on the ligands and surface expression in the presence of xlMRAP1.L. Overall, the distinct pharmacological modulation of xlMC3R.L and xlMC3R.S by dual MRAP2 proteins elucidated the functional consistency of melanocortin system during genomic duplication of tetrapod vertebrates.

19.
Dev Biol ; 316(2): 323-35, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18329638

RESUMO

We have investigated the requirement for the FGF and Wnt/beta-catenin pathways for Xenopus tadpole tail regeneration. Pathways were modified either by treatment with small molecules or by induction of transgene expression with heat shocks. Regeneration is inhibited by treatment with the FGF inhibitor SU5402, or by activation of a dominant negative FGF receptor, or by activation of expression of the Wnt inhibitor Dkk1. Agents promoting Wnt activity: the small molecule BIO, or a constitutively active form of beta-catenin, led to an increased growth rate. Combination of a Wnt activator with FGF inhibitor suppressed regeneration, while combination of a Wnt inhibitor with a FGF activator allowed regeneration. This suggests that the Wnt activity lies upstream of the FGF activity. Expression of both Wnt and FGF components was inhibited by activation of noggin, suggesting that BMP signalling lies upstream of both Wnt and FGF. The results show that the molecular mechanism of Xenopus tadpole tail regeneration is surprisingly similar to that of the Xenopus limb bud and the zebrafish caudal fin, despite the difference of anatomy.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Regeneração/fisiologia , Cauda/crescimento & desenvolvimento , Xenopus/crescimento & desenvolvimento , Amputação Cirúrgica , Animais , Animais Geneticamente Modificados , Transdução de Sinais , Cauda/citologia , Cauda/cirurgia , Transfecção , Proteínas Wnt/fisiologia
20.
Dev Cell ; 46(4): 397-409.e5, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130530

RESUMO

Melanocortin 4 receptor (Mc4r) plays a crucial role in the central control of energy homeostasis, but its role in peripheral organs has not been fully explored. We have investigated the roles of hypothalamus-mediated energy metabolism during Xenopus limb regeneration. We report that hypothalamus injury inhibits Xenopus tadpole limb regeneration. By loss-of-function and gain-of-function studies, we show that Mc4r signaling is required for limb regeneration in regeneration-competent tadpoles and stimulates limb regeneration in later-stage regeneration-defective tadpoles. It regulates limb regeneration through modulating energy homeostasis and ROS production. Even more interestingly, our results demonstrate that Mc4r signaling is regulated by innervation and α-MSH substitutes for the effect of nerves in limb regeneration. Mc4r signaling is also required for mouse digit regeneration. Thus, our findings link vertebrate limb regeneration with Mc4r-mediated energy homeostasis and provide a new avenue for understanding Mc4r signaling in the peripheral organs.


Assuntos
Extremidades , Homeostase/genética , Receptor Tipo 4 de Melanocortina/genética , Regeneração/genética , Transdução de Sinais , Animais , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA