Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121799, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991347

RESUMO

Synthesizing cubic spinel Cu2MnO4 with nanosheet structure (SCMO) aimed to construct a "non-radical-mediated radical-oxidative reaction", for increasing PMS utilization efficiency, and solving the defects of SO4•- and •OH through indirect PMS activation by electron transfer process. Compared with box-like Cu2MnO4 (11.1%, 0.0035 min-1) and ordinary Cu2MnO4 nanoparticles (21.3%, 0.0070 min-1), SCMO/PMS showed excellent trichloroethylene removal (98.8%, 0.1577 min-1). The pivotal role of Cu(III) was determined based on EPR analysis, quenching experiments, chemical probe experiments, hydrogen temperature-programmed reduction and Raman spectroscopy analysis, in-situ FTIR and Raman analyses. In brief, the interaction between PMS and SCMO could produce surface-bonded reactive complexes and the subsequent breaking of O-O bond in the sub-stable structure allowed the conversion of Cu(II) to Cu(III), which in turn facilitates the generation of •OH and SO4•-. The density functional theory (DFT) calculations provided supporting evidence for the electron donor role of SCMO and the increase of the electron acceptance capacity of PMS. SCMO/PMS system showed good resistance and degradation efficiency to complex composition and combined pollutants in actually contaminated groundwater, respectively. However, the coexistence of high concentrations of arsenic could significantly affect SCMO performance due to their adsorption on -OH groups, which still need in-depth study.


Assuntos
Tricloroetileno , Tricloroetileno/química , Catálise , Radicais Livres/química , Nanopartículas/química , Cobre/química , Peróxidos/química , Oxirredução , Poluentes Químicos da Água/química
2.
Ecotoxicol Environ Saf ; 251: 114522, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36628875

RESUMO

Tetrabromobisphenol A (TBBPA) is one of the most prevalently used brominated flame retardants. Due to its persistence, it is predominantly found in environmental matrices and has the potential to generate multi-generational toxicity. However, knowledge of its adaptive response or long-term residual effect in multi-generations, and molecular mechanisms remain understudied. In the current study, the model animal nematode Caenorhabditis elegans (C. elegans) was exposed to TBBPA at environmentally realistic concentrations (0.1-1000 µg L-1) for four consecutive generations (G0 to G3). Degenerative age-related multiple endpoints including lifespan, locomotion behaviors, growth, reproduction, oxidative stress-related biochemical responses, cell apoptosis, and stress related gene expressions were assessed in the continuous exposure generations (G0 and G3) and the discontinuously exposed generations (T3 and T'3). The results showed that changes in degenerative age-related response monitored four generations varied in direction and magnitude depending on the TBBPA concentrations, and the response intensify ranked as G0 > T'3/G3 > T3. TBBPA at 1 µg L-1 dosage was detected as the lowest observed effect concentration in multi-biomarkers. The underlying mechanism of aging phenotypes was that reactive oxygen species accumulation led to cell apoptosis regulated by gene ape-1, and confirmed catalase enzyme and superoxide dismutase activity played a crucial role in the detoxification process of TBBPA at the molecular level. This study provided insights into the underlying mechanism of TBBPA-interfered longevity and its environmental multi-generational potential risks.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Caenorhabditis elegans , Longevidade , Bifenil Polibromatos/toxicidade , Estresse Oxidativo , Retardadores de Chama/toxicidade
3.
J Environ Manage ; 321: 115925, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987058

RESUMO

The identification and apportionment of the multiple pollution sources are essential and crucial for improving the effectiveness of surface water resources management. In this study, the surface water samples were collected from Taihu Lake Basin, and the optimal water quality parameters for the receptor models were selected firstly with multivariate statistical analyses. In order to identify the potential pollution sources in surface water, dissolved organic matter (DOM) was analyzed with the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Through the Pearson correlation analysis of water quality parameters and DOM components, the pollution sources were further verified, i.e., agricultural activities, domestic sewage, phytoplankton growth/terrestrial input and industrial sources. In addition, principal component analysis (PCA) combined with the absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models were employed to quantify pollution sources. Compared with PCA-APCS-MLR model, PMF model resulted in higher performance on evaluation statistics and lower proportion of unexplained variability, thus showed more realistic and robust representation. The results of PMF showed that agricultural activities (42.08%) and domestic sewage (21.16%) were identified as the dominant pollution sources of surface water in the study area. This study highlights the effectiveness of EEM-PARAFAC in identifying the pollution sources, and the applicability of PMF in apportioning the contributions of each potential pollution source in surface water.


Assuntos
Lagos , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Rios , Esgotos/análise , Poluentes Químicos da Água/análise , Qualidade da Água
4.
J Environ Manage ; 301: 113888, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619584

RESUMO

In this study, chelating surfactant N-lauroyl ethylenediamine triacetate (N-LED3A) was used as strengthening agent for electrokinetic (EK) remediation of copper (Cu) and decabromodiphenyl ether (BDE209) co-contaminated low permeability soil. The results indicated that negligible amount of N-LED3A would be adsorbed on the experimental soil. The synchronous elution efficiencies (SEEs) of Cu and BDE209 had reached 65.4% and 49.9%, respectively, when the concentration of N-LED3A was 4000 mg/L, and they kept almost unchanged as the concentration of N-LED3A further increased. Meanwhile, the optimal SEEs were obtained at the pH condition within 6-8. The removal efficiencies of Cu (55.3%-65.8%) and BDE209 (31.4%-46.4%) would be increased with the applied voltage gradient and concentration of N-LED3A. In addition, BDE209 and Cu contaminants were also detected in the catholyte and anolyte, respectively, and their concentrations still showed an uptrend by the end of the experiments. While in the control experiments, the removal efficiency of Cu was in the range of 18.2%-23.6%, and almost no BDE209 was migrated out. The electric current would be increased with N-LED3A concentration increased, further resulting in the enhancement of cumulative electro-osmotic flow (EOF). However, the increment of EOF was limited after an 8-day treatment due to the declined capacity of the soil water supply, and the removal efficiency of BDE209 did not change proportionally to the cumulative EOF as a consequence. The accumulated (21 days) energy consumption under the optimal operation conditions (voltage gradient 1 V/cm, N-LED3A 1 g/L) was 377.28 KWh/m3. Efficiently synchronous removal of BDE209 and Cu could be achieved by the N-LED3A enhanced EK technique, exhibiting a promising application potential in the organic pollutant and heavy metal co-contaminated soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Cobre/análise , Etilenodiaminas , Éteres Difenil Halogenados , Permeabilidade , Solo , Poluentes do Solo/análise , Tensoativos
5.
Ecotoxicology ; 30(7): 1499-1510, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33244677

RESUMO

A halophilic PAHs-degrading strain, Martelella AD-3, was previously isolated from highly saline petroleum-contaminated soil. In this study, label-free proteomics were performed to identify differentially expressed proteins (DEPs) under Group P (phenanthrene +5% salinity) and Group G (glycerol +1% salinity), which would help to reveal the mechanism of phenanthrene degradation and salt tolerance. A total of 307 up-regulated DEPs were found in Group P, including 17 phenanthrene degradation proteins. Among these phenanthrene-degrading proteins, the ferredoxin of aromatic ring-hydroxylating dioxygenase (RHD) was up-regulated by 110-fold and gentisate 1,2-dioxygenases (GDOs) were only expressed in Group P. Besides, we also found nine high salt stress response proteins, including ectoine synthase and transport protein of compatible (osmoprotectant) solutes, were differentially up-regulated. These results indicate that strain AD-3 mainly relied on RHD and dihydrodiol dehydrogenase to degrade phenanthrene, and accumulated compatible solutes for resistance to salt stress. This study provides strong theoretical guidance for understanding the degradation of phenanthrene by strain AD-3 in high salt environments.


Assuntos
Alphaproteobacteria , Fenantrenos , Biodegradação Ambiental , Fenantrenos/toxicidade , Proteômica , Tolerância ao Sal
6.
Ecotoxicol Environ Saf ; 181: 445-454, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228820

RESUMO

Responses of Hypnum plumaeforme, Thuidium cymbifolium, and Plagiomnium cuspidatum to short-term (96 h) BDE-47 and BDE-209(0, 0.005, 0.05, 0.5, and 5 µM, respectively) stress were investigated. Both BDE-47 and BDE-209 increased the lipid peroxidation in the three moss species, malondialdehyde (MDA) content increased with the elevated concentration of contaminants, and followed the order: P. cuspidatum > H. plumaeforme > T. cymbifolium on exposure to different concentrations. BDE-47 and BDE-209 stimulated the superoxide dismutase (SOD) and peroxidase (POD) activity of the three moss species, indicating that they played an important role in preventing oxidative stress. Reactive oxygen species (ROS) accumulation was positively correlated with the level of contaminants. The response of anti-oxidative enzymes to BDE-47 and BDE-209 stress differed among the three species. At 5  µM BDE-47 and BDE-209 treatment, the chlorophyll content of T. cymbifolium was even a little higher than the control group. Proline played an important role for the scavenging of ROS in P. cuspidatum and T. cymbifolium. In summary, BDE-47 was more toxic to the three moss species than BDE-209. P. cuspidatum was the most sensitive and T. cymbifolium was the most tolerant species to BDE-47 and BDE-209 stress. The strong resistance and tolerance of T. cymbifolium, combined with sensitive/moderate anti-oxidative response could elucidate its potential use as bio-indicator in the ecological risk assessment of BDE-47 and BDE-209 contamination.


Assuntos
Antioxidantes/metabolismo , Bryopsida/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Éteres Difenil Halogenados/toxicidade , Bryopsida/enzimologia , Bryopsida/metabolismo , Biomarcadores Ambientais , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Ecotoxicol Environ Saf ; 169: 273-281, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30453175

RESUMO

To better understand the toxicity of tetrabromobisphenol A (TBBPA), its effects on the model nematode Caenorhabditis elegans were investigated. Following a step and repeated chronic exposure from L4-larvae to day-10 adult, physiology endpoints (growth and locomotion behaviors including head thrashes, body bends and pumping rate), biochemical endpoints (reactive oxygen species, superoxide dismutase activity, catalase activity), and molecular stress-related gene expression were tested at environmentally relevant concentrations of TBBPA (0.01-100 µg/L). The results showed that concentrations of TBBPA greater than 10 µg/L, clearly influenced the physiology behaviors (growth and locomotion endpoints). Under repeated exposure, C. elegans exhibited adaptive responses in head thrashes and pumping rate. Compared to toxicity evaluation following repeated chronic exposure, a significantly greater response was induced at the same concentration following a step chronic exposure. Reactive oxygen species production was significantly enhanced following a step and repeated TBBPA exposure at the concentrations of 1 and 10 µg/L, respectively. qRT-PCR showed that ctl-1, ctl-2, ctl-3 and sod-3 expression significantly increased, which was obviously correlated with physiological and biochemical behaviors under both treatment conditions according to Pearson correlation test analysis. sod-3 and ctl-2 mutations were more sensitive than the wild-type N2 under a step chronic TBBPA exposure at a level of 10 µg/L. Thus, chronic exposure to TBBPA induces an oxidative stress response in C. elegans, with ctl-2 and sod-3 playing a vital role in TBBPA-induced toxicity in nematodes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Relação Dose-Resposta a Droga , Larva/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
8.
Water Sci Technol ; 76(2): 452-458, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28726710

RESUMO

In this paper, the amine-functionalized magnetite hollow nanospheres (AMHNs), prepared through a facile one-pot synthesis, were used as heavy metal ion adsorbents, whose morphology and physicochemical features were exploring by transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction and Fourier-transform infrared analyses. Its adsorption performances for Pb2+, Cu2+, Zn2+, Ni2+ and Cd2+ were studied in detail. The adsorption increased with the increase of initial pH value of the solution and could be obviously affected by ionic strength. Also, the adsorption kinetics and isotherms were studied. The adsorption processes for Pb2+, Cu2+, Zn2+, Ni2+ and Cd2+ could all reach equilibrium in 60 min and be described well by the Langmuir thermodynamics model. The saturated adsorption capacities for Pb2+, Cu2+, Zn2+, Ni2+ and Cd2+ were 0.66, 0.47, 0.45, 0.38 and 0.26 mmol/g, respectively. In addition, the competitive adsorption showed the AMHNs had higher affinity to Pb2+ than to other heavy metal ions.


Assuntos
Aminas/química , Metais Pesados/química , Modelos Químicos , Nanosferas/química , Adsorção , Cádmio , Óxido Ferroso-Férrico , Concentração de Íons de Hidrogênio , Íons , Cinética
9.
Ecotoxicol Environ Saf ; 113: 45-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25483371

RESUMO

Lead (Pb) and BDE209 (decabromodiphenyl ether) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impact on earthworms of exposure to the two chemicals remains almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the uptake and toxicity of Pb in the presence of BDE209 to the earthworm Eisenia fetida. The results have demonstrated that the presence of BDE209 facilitated the release of Pb into soil porewater. Compared with exposure to Pb alone, simultaneous exposure to BDE209 significantly enhanced the Pb uptake rate at the level of p<0.05, while decreased the depuration rate, ultimately resulting in a larger bioaccumulation factor (BAF) value. Additionally, BDE209 addition reduced the antioxidant enzymatic activities [superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST)] and total antioxidant capacity (T-AOC). The decline trend in antioxidant enzymatic activities and T-AOC might explain an increase in lipid peroxidation reflected by the observed augment in malondialdehyde (MDA) level. Moreover, a biomarker of the lysosomal membrane stability, measured by neutral red retention time (NRRT), was also investigated. The NRRT obviously declined in the joint presence of BDE209, indicating a distinct time-response relationship. The results of these observations have provided a basic understanding of the potential eco-toxicological effects of joint heavy metal and BDE209 exposure on terrestrial invertebrates in a multi-contamination context of ecosystems.


Assuntos
Éteres Difenil Halogenados/toxicidade , Chumbo/farmacocinética , Chumbo/toxicidade , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Interações Medicamentosas , Glutationa Transferase/metabolismo , Cinética , Chumbo/análise , Peroxidação de Lipídeos , Malondialdeído/farmacologia , Oligoquetos/efeitos dos fármacos , Oligoquetos/enzimologia , Oligoquetos/metabolismo , Peroxidase/metabolismo , Solo/química , Poluentes do Solo/análise , Superóxido Dismutase/metabolismo
10.
Ecotoxicology ; 24(2): 301-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25373545

RESUMO

Lead (Pb) and decabromodiphenyl ether (BDE209) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impacts on the oxidative perturbations and hydroxyl radical (·OH) generation in earthworms of exposure to the two chemicals remain almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the effects of Pb in earthworms Eisenia fetida in the presence of BDE209 through the use of several biomarkers in microcosms. The results have demonstrated that the addition of BDE209 (1 or 10 mg kg(-1)) decreased the enzymatic activities [superoxide dismutase, catalase (CAT), peroxidase] and total antioxidant capacity (T-AOC) compared with exposure to BDE209 alone (50, 250 or 500 mg kg(-1)). Electron paramagnetic resonance spectra indicated that ·OH radicals in earthworms were significantly induced by Pb in the presence of BDE209. The changing pattern of malondialdehyde (MDA) contents was accordant with that of ·OH intensity suggested that reactive oxygen species might lead to cellular lipid peroxidation. Furthermore, CAT exhibited more sensitive response to single Pb exposure than the other biomarkers, while T-AOC, ·OH and MDA might be three most sensitive biomarkers in earthworms after simultaneous exposure to Pb and BDE209. The results of these observations suggested that oxidative stress appeared in E. fetida, and it may play an important role in inducing the Pb and BDE209 toxicity to earthworms.


Assuntos
Éteres Difenil Halogenados/toxicidade , Chumbo/toxicidade , Oligoquetos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/toxicidade , Poluentes do Solo/toxicidade , Animais , Antioxidantes/metabolismo , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo
11.
Int J Mol Sci ; 16(6): 11834-48, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-26020478

RESUMO

A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg · L(-1) starting concentration) over a range of 3%-10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process.


Assuntos
Halomonadaceae/isolamento & purificação , Halomonadaceae/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Fenóis/metabolismo , Tolerância ao Sal , Diamino Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Catecol 1,2-Dioxigenase/genética , Halomonadaceae/genética , Oxigenases de Função Mista/genética
12.
Environ Technol ; 36(5-8): 667-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25220534

RESUMO

Trichloroethylene (TCE) and phenol were often found together as co-contaminants in the groundwater of industrial contaminated sites. An effective method to remove TCE was aerobic biodegradation by co-metabolism using phenol as growth substrates. However, the aerobic biodegradation process was easily limited by low concentration of dissolved oxygen (DO) in groundwater, and DO was improved by air blast technique with difficulty. This study enriched a bacterial community using hydrogen peroxide (H2O2) as the sole oxygen source to aerobically degrade TCE by co-metabolism with phenol in groundwater. The enriched cultures were acclimatized to 2-8 mM H2O2 which induced catalase, superoxide dismutase and peroxidase to decompose H2O2 to release O2 and reduce the toxicity. The bacterial community could degrade 120 mg/L TCE within 12 days by using 8 mM H2O2 as the optimum concentration, and the TCE degradation efficiency reached up to 80.6%. 16S rRNA gene cloning and sequencing showed that Bordetella, Stenotrophomonas sp., Sinorhizobium sp., Variovorax sp. and Sphingobium sp. were the dominant species in the enrichments, which were clustered in three phyla: Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Polymerase chain reaction detection proved that phenol hydroxylase (Lph) gene was involved in the co-metabolic degradation of phenol and TCE, which indicated that hydroxylase might catalyse the epoxidation of TCE to form the unstable molecule TCE-epoxide. The findings are significant for understanding the mechanism of biodegradation of TCE and phenol co-contamination and helpful for the potential applications of an aerobic bioremediation in situ the contaminated sites.


Assuntos
Peróxido de Hidrogênio/metabolismo , Consórcios Microbianos , Fenol/metabolismo , Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Aerobiose , Biodegradação Ambiental
13.
Environ Toxicol ; 29(11): 1346-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23613127

RESUMO

Greater exposure to Pb(Ⅱ) increases the likelihood of harmful effects in the environment. In this study, the aquatic unicellular alga Chlorella protothecoides (C. protothecoides) and Chlorella vulgaris (C. vulgaris) were chosen to assess the acute and chronic toxicity of Pb(Ⅱ) exposure. Results of the observations show dose-response relationships could be clearly observed between Pb(Ⅱ) concentration and percentage inhibition (PI). Exposure to Pb(Ⅱ) increased malondialdehyde (MDA) content by up to 4.22 times compared with the control, suggesting that there was some oxidative damage. ANOVA analysis shows that Pb(Ⅱ) decreased chlorophyll (chl) content, indicating marked concentration-dependent relationships, and the lowest levels of chl a, chl b, and total-chl were 14.53, 18.80, and 17.95% of the controls, respectively. A real-time PCR assay suggests the changes in transcript abundances of three photosynthetic-related genes. After 120 h exposure Pb(Ⅱ) reduced the transcript abundance of rbcL, psaB, and psbC, and the relative abundances of the three genes of C. protothecoides and C. vulgaris in response to Pb(Ⅱ) were 54.66-98.59, 51.68-95.59, 37.89-95.48, 36.04-94.94, 41.19-91.20, and 58.75-96.80% of those of the controls, respectively. As for 28 d treatments, the three genes displayed similar inhibitory trend. This research provides a basic understanding of Pb(Ⅱ) toxicity to aquatic organisms.


Assuntos
Chlorella/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Chlorella/fisiologia , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/fisiologia , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Oxirredução , Fotossíntese/genética , Especificidade da Espécie
14.
Environ Toxicol ; 29(6): 714-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22887798

RESUMO

The acute and chronic toxic effects of Bisphenol A (BPA) on Chlorella pyrenoidosa (C. pyrenoidosa) and Scenedesmus obliquus (S. obliquus) were not well understood. The indoor experiments were carried out to observe and analyze the BPA-induced changes. Results of the observations showed that in acute tests BPA could significantly inhibit the growth of both algae, whereas chronic exposure hardly displayed similar trend. Superoxide dismutase (SOD) and Catalase (CAT) activities of both algae were promoted in all the treatments. Chlorophyll a synthesis of the two algae exhibited similar inhibitory trend in short-term treatments, and in chronic tests C. pyrenoidosa hardly resulted in visible influence, whereas in contrast, dose-dependent inhibitory effects of S. obliquus could be clearly observed. The experimental results indicated that the growth and Chlorophyll a syntheses of S.obliquus were more sensitive in response to BPA than that of C. pyrenoidosa, whereas for SOD andCAT activities, C. pyrenoidosa was more susceptible. This research provides a basic understanding of BPA toxicity to aquatic organisms.


Assuntos
Compostos Benzidrílicos/toxicidade , Chlorella/efeitos dos fármacos , Fenóis/toxicidade , Scenedesmus/efeitos dos fármacos , Catalase/metabolismo , Chlorella/crescimento & desenvolvimento , Clorofila/análise , Clorofila A , Relação Dose-Resposta a Droga , Scenedesmus/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
15.
Environ Technol ; 35(5-8): 791-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24645461

RESUMO

In this study, in-situ chemical oxidation technique employing Fe(II) catalytic sodium percarbonate (SPC) to stimulate the oxidation of trichloroethylene (TCE) in contaminated groundwater remediation was investigated. The effects of various factors including the SPC/TCE/Fe2+ molar ratio, the initial solution pH and the widely found constituents in groundwater matrix such as Cl(-), HCO3(-), SO4(2-) and NO3(-) anions and natural organic matters were evaluated. The experimental results showed that TCE could be completely oxidized in 5 min at 20 degrees C with a SPC/TCE/Fe2+ molar ratio of 5:1:10, indicating the significant effectiveness of the SPC/Fe2+ system for TCE removal. The initial solution pH value (from 3 to 11) has less influence on TCE oxidation rate. In contrast, Cl(-) and HCO3(-) anions had a negative effect on TCE removal in which HCO3(-) possesses a stronger influence than Cl(-), whereas the effects of both SO4(2-) and NO3(-) anions appeared to be negligible. With the 1.0-10 mg/L concentrations of humic acid in solution, slightly inhibitive effect was observed, suggesting that dissolved organic matters consumed less SPC and had a negligible effect on the oxidation of TCE in SPC/Fe2+ system. From the intermediate products' analyses and the released Cl(-) contents from TCE parent contaminant in solution, all the decomposed TCE had completely dechlorinated and led to carbon dioxide and hydrocarbon. In conclusion, Fe(II) catalytic SPC oxidation is a highly promising technique for TCE-contaminated groundwater remediation, but some complex constituents such as HCO3(-), in in-situ groundwater matrix should be carefully considered for its practical application.


Assuntos
Carbonatos/química , Compostos Ferrosos/química , Ferro/química , Tricloroetileno/química , Purificação da Água/métodos , Ânions/química , Dióxido de Carbono/química , Catálise , Cloro/química , Água Subterrânea , Substâncias Húmicas , Hidrocarbonetos/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Oxigênio/química , Solventes/química , Temperatura , Fatores de Tempo , Poluentes Químicos da Água/química
16.
J Environ Sci (China) ; 26(10): 2018-26, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288545

RESUMO

A typical Printed Circuit Board (PCB) manufacturer was chosen as the object of this study. During PCB processing, fine particulate matter and heavy metals (Cu, Zn, Pb, Cr, Cd and Ni) will be released into the air and dust, which then impact workers' health and the environment. The concentrations of total suspended particle (TSP), PM10 and PM2.5 in the off-site were 106.3, 90.0 and 50.2µg/m(3), respectively, while the concentrations of TSP, PM10 and PM2.5 in the workshops ranged from 36.1 to 365.3, from 27.1 to 289.8 and from 22.1 to 212.3µg/m(3), respectively. Almost all six of the heavy metals were detected in all of the particle samples except Cd. For each workshop, it was obvious that Zn was the most enriched metal in TSP, followed by Cu>Pb (Cr)>Ni>Cd, and the same trend was found for PM10 and PM2.5. In the dust samples, Cu (which ranged from 4.02 to 56.31mg/g) was the most enriched metal, followed by Zn, Cr, Pb, Ni and Cd, and the corresponding concentrations ranged from 0.77 to 4.47, 0.37 to 1.59, 0.26 to 0.84, 0.13 to 0.44 and nd to 0.078mg/g, respectively. The health risk assessment showed that noncancerous effects are unlikely for Zn, Pb, Cr, Cu, Cd and Ni. The carcinogenic risks for Cd and Ni were all lower than 10(-6), except for Cr. This result indicates that carcinogenic risks for workers are relatively possible in the workshops. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCB's recycling industry.


Assuntos
Eletrônica , Metais Pesados/toxicidade , Exposição Ocupacional , Material Particulado , Humanos , Microscopia Eletrônica de Transmissão , Medição de Risco
17.
Chemosphere ; 357: 141943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621492

RESUMO

In this study, bentonite supporting phosphorus-doped Fe2MnO4 (BPF) was synthesized and applied for PMS activation to degrade TCE. Morphology and structure characterization results indicated the successfully synthesized of BPF, and the BPF/PMS system not only featured high TCE removal (97.4%) but also high reaction rate constant (kobs = 0.0554 min-1) and PMS utilization (70.4%, kobs = 0.0228 min-1). According to the results of various experiments, massive oxygen vacancies on P-Fe2MnO4 alter its charge balance and facilitate the electron transfer process named adjacent transfer (direct electron capture by adsorbed PMS from adjacent TCE). Mn(III) is the main adsorption site for PMS, and the hydroxyl groups on the catalyst (Fe sites of P-Fe2MnO4, Si and Al sites of bentonite) can also offer binding sites for PMS. The hydrogen-bonded PMS on Fe(III) and Mn(III) sites will subsequently accept the discharged electrons to generate free radicals and high-valent metal species. Meanwhile, electron loss of HSO5- that chemically bonded to hydroxyl groups on bentonite will generate SO5•-, which will further produce 1O2 through self-bonding. the active species on the catalyst surface contribute 65% of TCE degradation in the heterogeneous catalytic oxidation system.


Assuntos
Bentonita , Compostos de Manganês , Peróxidos , Tricloroetileno , Bentonita/química , Catálise , Peróxidos/química , Tricloroetileno/química , Compostos de Manganês/química , Adsorção , Oxirredução , Compostos Férricos/química , Recuperação e Remediação Ambiental/métodos , Fósforo/química , Manganês/química , Poluentes Químicos da Água/química
18.
Water Environ Res ; 85(8): 725-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24003598

RESUMO

The acute and chronic toxicological effects of Chloramphenicol (CAP) on Scenedesmus obliquus and Chlorella pyrenoidosa are not well understood. The indoor experiments were carried to observe and analyze the CAP induced changes. Results of the observations have showed that CAP exposure could significantly inhibit the growth of Scenedesmus obliquus in almost all the treated groups, while Chlorella pyrenoidosa exhibited less sensitivity. Chlorophyll-a syntheses of Scenedesmus obliquus were all inhibited by CAP exposure, while Chlorella pyrenoidosa displayed obvious stimulation effect. Catalase (CAT) and Superoxide dismutase (SOD) activities of both algae were promoted in all the treatments. The experimental results indicated that the growth and Chlorophyll-a syntheses of Scenedesmus obliquus were more sensitive in response to CAP exposure than that of Chlorella pyrenoidosa. While for CAT and SOD activities, Chlorella pyrenoidosa showed more susceptible. This research provides a basic understanding of CAP toxicity to aquatic organisms.


Assuntos
Antibacterianos/toxicidade , Cloranfenicol/toxicidade , Chlorella/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Catalase/metabolismo , Chlorella/enzimologia , Chlorella/crescimento & desenvolvimento , Clorofila/metabolismo , Clorofila A , Espécies Reativas de Oxigênio/metabolismo , Scenedesmus/enzimologia , Scenedesmus/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
19.
Environ Pollut ; 337: 122530, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690470

RESUMO

Perfluoro-2-propoxypropanoic acid (GenX) has emerged as a substitute for perfluorooctanoic acid (PFOA) especially since PFOA was listed among the persistent organic pollutants (POPs) by the Stockholm Convention in 2019. However, limited knowledge exists regarding the behavior and mobility of GenX in natural soils hindering the prediction of its environmental fate. This study investigated the mobility and retention of GenX and PFOA in soils under batch and water-saturated flow-through conditions. Batch experiments revealed that GenX has a lower binding affinity to soil than longer-chained PFOA, potentially threatening groundwater resources. Unlike metal-oxides/minerals (ferrihydrite, gibbsite and manganese dioxide), biochar (BC) and activated carbon (AC) amendments significantly enhanced the sorption of both GenX and PFOA in soil. Sorption data on minerals and carbonaceous materials implied that for shorter-chained GenX, the predominant mode of sorption was through electrostatic (ionic) interactions, while for longer-chained PFOA, hydrophobic interactions became progressively more important with increasing chain length. The dynamic flow experiments demonstrated that these soil amendments enhanced the retention of both compounds, thereby decreasing their mobility. Simultaneous injection of both compounds into columns pre-loaded with either PFOA or GenX increased their retardation. GenX sorption was more affected by pre-sorbed PFOA compared to the minimal impact of pre-loaded GenX on PFOA sorption. A newly developed reactive transport model, which incorporates a two-site sorption model and accounts for kinetic-limited processes, accurately predicted the sorption and transport of both compounds in single and binary contamination systems. These findings have important implications for predicting and assessing the fate and mobility of per- and polyfluoroalkyl substances (PFAS) in soils and groundwaters.


Assuntos
Fluorocarbonos , Solo , Solo/química , Água , Fluorocarbonos/análise , Caprilatos/química , Minerais
20.
Sci Total Environ ; 854: 158713, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113791

RESUMO

Heavy metal exposure via food consumption is inadequately investigated and deserves considerable attention. We collected hundreds of food ingredients and daily meals and assessed their probabilistic health risk using a Monte Carlo simulation based on an ingestion rate investigation. The detected concentrations of four heavy metals (Cr, Cd, Pb, and Hg) in all daily meal samples were within the limits stipulated in the National Food Safety Standard (GB 2762-2017), while that for As level was excessive in 0.3 % of daily meal samples. The same results were also observed in most food ingredient samples, and a standard-exceeding ratio of 23 % of As was observed in aquatic food or products, especially seafood, which was with the highest concentration reaching 1.24 mg/kg. Combining the detected heavy metal amounts with the ingestion rate investigation, the hazard quotients (HQs) of As, Cr, Cd, Pb, and Hg in daily meals and food ingredients were all calculated as lower than 1 (no obvious harm), while the incremental lifetime cancer risk (ILCR) of As and Cr (>1 × 10-4), indicating that the residual As posed potential health effects to human health. It was noteworthy that the proportion of aquatic foods only accounted for 6.3 % of daily meals, but they occupied 41.1 % of the heavy metal exposure, which could be attributed to the high amounts of heavy metals in aquatic foods. This study not only provided basic data of heavy metal exposure and potential health risks through daily oral dietary intake, but also illuminated the contribution of different kinds of food ingredients. Specifically, the study highlighted the contamination of aquatic foods with As, especially seafood such as shellfish and bivalves.


Assuntos
Ingredientes de Alimentos , Mercúrio , Metais Pesados , Humanos , Cádmio , Rios , Chumbo , Contaminação de Alimentos/análise , Metais Pesados/análise , Medição de Risco/métodos , Mercúrio/análise , Refeições , Monitoramento Ambiental , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA