Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317220

RESUMO

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Assuntos
Adipogenia , Ácidos Linoleicos Conjugados , Tocoferóis , Masculino , Humanos , Ratos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Distribuição Tecidual , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo
2.
J Nanobiotechnology ; 22(1): 169, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609998

RESUMO

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS: In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS: Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS: We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.


Assuntos
COVID-19 , Nanopartículas , Humanos , Enzima de Conversão de Angiotensina 2 , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2
3.
Drug Des Devel Ther ; 18: 1277-1296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681207

RESUMO

Psoriasis presents as a complex genetic skin disorder, characterized by the interaction between infiltrated immune cells and keratinocytes. Substantial progress has been made in understanding the molecular mechanisms of both coding and non-coding genes, which has positively impacted clinical treatment approaches. Despite extensive research into the genetic aspects of psoriasis pathogenesis, fully grasping its epigenetic component remains a challenging endeavor. In response to the pressing demand for innovative treatments to alleviate inflammatory skin disorders, various novel strategies are under consideration. These include gene therapy employing antisense nucleotides, silencing RNA complexes, stem cell therapy, and antibody-based therapy. There is a pressing requirement for a psoriasis-like animal model that replicates human psoriasis to facilitate early preclinical evaluations of these novel treatments. The authors conduct a comprehensive review of various gene therapy in different psoriasis-like animal models utilized in psoriasis research. The animals included in the list underwent skin treatments such as imiquimod application, as well as genetic and biologic injections, and the results of these interventions are detailed. Animal models play a crucial role in translating drug discoveries from the laboratory to clinical practice, and these models aid in improving the reproducibility and clinical applicability of preclinical data. Numerous animal models with characteristics similar to those of human psoriasis have proven to be useful in understanding the development of psoriasis. In this review, the article focuses on RNA-based gene therapy exploration in different types of psoriasis-like animal models to improve the treatment of psoriasis.


Assuntos
Terapia Genética , Psoríase , Animais , Humanos , Modelos Animais de Doenças , Psoríase/terapia , Psoríase/genética , Psoríase/imunologia , RNA/genética
4.
Int J Biol Macromol ; 268(Pt 1): 131673, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642681

RESUMO

Bacterial infections trigger inflammation and impede the closure of skin wounds. The misuse of antibiotics exacerbates skin infections by generating multidrug-resistant bacteria. In this study, we developed chemo-photothermal therapy (chemo-PTT) based on near-infrared (NIR)-irradiated chitosan/gold nanorod (GNR) clusters as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. The nanocomposites exhibited an average size of 223 nm with a surface charge of 36 mV. These plasmonic nanocomposites demonstrated on-demand and rapid hyperthermal action under NIR. The combined effect of positive charge and PTT by NIR-irradiated nanocomposites resulted in a remarkable inhibition rate of 96 % against planktonic MRSA, indicating a synergistic activity compared to chitosan nanoparticles or GNR alone. The nanocomposites easily penetrated the biofilm matrix. The combination of chemical and photothermal treatments by NIR-stimulated clusters significantly damaged the biofilm structure, eradicating MRSA inside the biomass. NIR-irradiated chitosan/GNR clusters increased the skin temperature of mice by 13 °C. The plasmonic nanocomposites induced negligible skin irritation in vivo. In summary, this novel nanosystem demonstrated potent antibacterial effects against planktonic and biofilm MRSA, showcasing the possible efficacy in treating skin infections.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Ouro , Staphylococcus aureus Resistente à Meticilina , Nanotubos , Terapia Fototérmica , Quitosana/química , Quitosana/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanotubos/química , Animais , Terapia Fototérmica/métodos , Camundongos , Plâncton/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/terapia , Nanocompostos/química , Testes de Sensibilidade Microbiana
5.
Int Immunopharmacol ; 141: 112863, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146779

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that causes persistent inflammation involving the joints, cartilage, and synovium. In individuals with RA, alterations in the composition of intestinal bacteria suggest the vital role of gut microbiota in immune dysfunction. Multiple therapies commonly used to treat RA can also alter the diversity of gut microbiota, further suggesting the modulation of gut microbiota as a prevention or treatment for RA. Therefore, a better understanding of the changes in the gut microbiota that accompany RA should facilitate the development of novel therapeutic approaches. In this study, B. coagulans BACO-17 not only significantly reduced paw swelling, arthritis scores, and hind paw and forepaw thicknesses but also protected articular cartilage and the synovium against RA degeneration, with a corresponding downregulation of TNF-α expression. The inhibition or even reversing of RA progression highlights B. coagulans BACO-17 as a novel therapeutic for RA worth investigating.

6.
Aging (Albany NY) ; 15(24): 14900-14914, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38126996

RESUMO

Despite advances in therapeutic strategies, lung cancer remains the leading cause of cancer-related death worldwide. Acetylshikonin is a derivative of the traditional Chinese medicine Zicao and presents a variety of anticancer properties. However, the effects of acetylshikonin on lung cancer have not been fully understood yet. This study explored the mechanisms underlying acetylshikonin-induced cell death in non-small cell lung cancer (NSCLC). Treating NSCLC cells with acetylshikonin significantly reduced cell viability, as evidenced by chromatin condensation and the appearance of cell debris. Acetylshikonin has also been shown to increase cell membrane permeability and induce cell swelling, leading to an increase in the population of necrotic cells. When investigating the mechanisms underlying acetylshikonin-induced cell death, we discovered that acetylshikonin promoted oxidative stress, decreased mitochondrial membrane potential, and promoted G2/M phase arrest in lung cancer cells. The damage to NSCLC cells induced by acetylshikonin resembled results involving alterations in the cell membrane and mitochondrial morphology. Our analysis of oxidative stress revealed that acetylshikonin induced lipid oxidation and down-regulated the expression of glutathione peroxidase 4 (GPX4), which has been associated with necroptosis. We also determined that acetylshikonin induces the phosphorylation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3 and mixed lineage kinase domain-like kinase (MLKL). Treatment with RIPK1 inhibitors (necrostatin-1 or 7-Cl-O-Nec-1) significantly reversed acetylshikonin-induced MLKL phosphorylation and NSCLC cell death. These results indicate that acetylshikonin activated the RIPK1/RIPK3/MLKL cascade, leading to necroptosis in NSCLC cells. Our findings indicate that acetylshikonin reduces lung cancer cells by promoting G2/M phase arrest and necroptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Quinases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Necroptose , Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA