Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 182: 107728, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804427

RESUMO

Fossils provide important insight into our understanding of phylogenetic history by serving as calibration points for divergence time estimation. However, uncertainties in the fossil record due to parallel evolution and convergent evolution can critically affect estimates of node ages. Here, we compare and contrast estimates of phylogenetic divergence with geologic and fossil history for two freshwater snail genera of the family Viviparidae in East Asia (Cipangopaludina and Margarya). Cipangopaludina species are commonly widely distributed species in East Asia, but extant Margarya species are endemic to the ancient lakes in Yunnan, China. According to some previous studies, parallel evolution or convergent evolution of shell morphology has occurred in the family several times which may affect divergence time estimation using fossil records. In this study, we used SNP data derived from ddRAD-seq loci to investigate population demographic history of both genera. Our results show a common pattern of lake endemic lineages diversifying from widely distributed lineages in the Miocene, and multiple colonization to a single ancient lake occurred in the Pleistocene. Our results indicate substantial incongruence among estimated phylogenomic divergence times, some fossil records, and formation ages of ancient lakes. These findings suggest some fossil records may be misidentified in these groups and highlight the need to carefully evaluate geological evidence and fossil records when using these for divergence time estimation.


Assuntos
Fósseis , Caramujos , Animais , Filogenia , China , Ásia Oriental , Lagos
2.
BMC Genomics ; 23(1): 796, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460988

RESUMO

BACKGROUND: Calcareous outcrops, rocky areas composed of calcium carbonate (CaCO3), often host a diverse, specialized, and threatened biomineralizing fauna. Despite the repeated evolution of physiological and morphological adaptations to colonize these mineral rich substrates, there is a lack of genomic resources for calcareous rock endemic species. This has hampered our ability to understand the genomic mechanisms underlying calcareous rock specialization and manage these threatened species. RESULTS: Here, we present a new draft genome assembly of the threatened limestone endemic land snail Oreohelix idahoensis and genome skim data for two other Oreohelix species. The O. idahoensis genome assembly (scaffold N50: 404.19 kb; 86.6% BUSCO genes) is the largest (~ 5.4 Gb) and most repetitive mollusc genome assembled to date (85.74% assembly size). The repetitive landscape was unusually dominated by an expansion of long terminal repeat (LTR) transposable elements (57.73% assembly size) which have shaped the evolution genome size, gene composition through retrotransposition of host genes, and ectopic recombination. Genome skims revealed repeat content is more than 2-3 fold higher in limestone endemic O. idahoensis compared to non-calcareous Oreohelix species. Gene family size analysis revealed stress and biomineralization genes have expanded significantly in the O. idahoensis genome. CONCLUSIONS: Hundreds of threatened land snail species are endemic to calcareous rock regions but there are very few genomic resources available to guide their conservation or determine the genomic architecture underlying CaCO3 resource specialization. Our study provides one of the first high quality draft genomes of a calcareous rock endemic land snail which will serve as a foundation for the conservation genomics of this threatened species and for other groups. The high proportion and activity of LTRs in the O. idahoensis genome is unprecedented in molluscan genomics and sheds new light how transposable element content can vary across molluscs. The genomic resources reported here will enable further studies of the genomic mechanisms underlying calcareous rock specialization and the evolution of transposable element content across molluscs.


Assuntos
Carbonato de Cálcio , Gastrópodes , Animais , Elementos de DNA Transponíveis/genética , Sequências Repetidas Terminais , Genômica , Espécies em Perigo de Extinção
3.
J Hered ; 111(1): 92-102, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31841140

RESUMO

Newly arrived species on young or remote islands are likely to encounter less predation and competition than source populations on continental landmasses. The associated ecological release might facilitate divergence and speciation as colonizing lineages fill previously unoccupied niche space. Characterizing the sequence and timing of colonization on islands represents the first step in determining the relative contributions of geographical isolation and ecological factors in lineage diversification. Herein, we use genome-scale data to estimate timing of colonization in Naesiotus snails to the Galápagos islands from mainland South America. We test inter-island patterns of colonization and within-island radiations to understand their contribution to community assembly. Partly contradicting previously published topologies, phylogenetic reconstructions suggest that most Naesiotus species form island-specific clades, with within-island speciation dominating cladogenesis. Galápagos Naesiotus also adhere to the island progression rule, with colonization proceeding from old to young islands and within-island diversification occurring earlier on older islands. Our work provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galápagos lineages.


Assuntos
Especiação Genética , Caramujos/genética , Distribuição Animal , Animais , Biodiversidade , Cronologia como Assunto , Conjuntos de Dados como Assunto , Ecossistema , Equador , Filogenia , Filogeografia , Análise de Sequência de DNA , Caramujos/classificação
4.
Microbiol Resour Announc ; 8(33)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416883

RESUMO

We announce the complete mitochondrial genome sequence of Oreohelix idahoensis, a threatened land snail endemic to the Pacific Northwest of the United States. The circular genome is 14.2 kb and contains 13 protein-coding genes, 2 rRNA genes, and 21 tRNA genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA