Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 19(8): e1011544, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37595007

RESUMO

Astroviruses (AstVs) can cause of severe infection of the central nervous system (CNS) in immunocompromised individuals. Here, we identified a human AstV of the VA1 genotype, HAstV-NIH, as the cause of fatal encephalitis in an immunocompromised adult. We investigated the cells targeted by AstV, neurophysiological changes, and host responses by analyzing gene expression, protein expression, and cellular morphology in brain tissue from three cases of AstV neurologic disease (AstV-ND). We demonstrate that neurons are the principal cells targeted by AstV in the brain and that the cerebellum and brainstem have the highest burden of infection. Detection of VA1 AstV in interconnected brain structures such as thalamus, deep cerebellar nuclei, Purkinje cells, and pontine nuclei indicates that AstV may spread between connected neurons transsynaptically. We found transcriptional dysregulation of neural functions and disruption of both excitatory and inhibitory synaptic innervation of infected neurons. Importantly, transcriptional dysregulation of neural functions occurred in fatal cases, but not in a patient that survived AstV-ND. We show that the innate, but not adaptive immune response was transcriptionally driving host defense in the brain of immunocompromised patients with AstV-ND. Both transcriptome and molecular pathology studies showed that most of the cellular changes were associated with CNS-intrinsic cells involved in phagocytosis and injury repair (microglia, perivascular/parenchymal border macrophages, and astrocytes), but not CNS-extrinsic cells (T and B cells), suggesting an imbalance of innate and adaptive immune responses to AstV infection in the brain as a result of the underlying immunodeficiencies. These results show that VA1 AstV infection of the brain in immunocompromised humans is associated with imbalanced host defense responses, disruption of neuronal somatodendritic compartments and synapses and increased phagocytic cellular activity. Improved understanding of the response to viral infections of the human CNS may provide clues for how to manipulate these processes to improve outcomes.


Assuntos
Infecções por Astroviridae , Encéfalo , Adulto , Humanos , Sistema Nervoso Central , Neurônios , Imunidade
3.
Crit Care Med ; 52(3): 475-482, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548511

RESUMO

OBJECTIVES: In high-income countries (HICs), sepsis endotypes defined by distinct pathobiological mechanisms, mortality risks, and responses to corticosteroid treatment have been identified using blood transcriptomics. The generalizability of these endotypes to low-income and middle-income countries (LMICs), where the global sepsis burden is concentrated, is unknown. We sought to determine the prevalence, prognostic relevance, and immunopathological features of HIC-derived transcriptomic sepsis endotypes in sub-Saharan Africa. DESIGN: Prospective cohort study. SETTING: Public referral hospital in Uganda. PATIENTS: Adults ( n = 128) hospitalized with suspected sepsis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Using whole-blood RNA sequencing data, we applied 19-gene and 7-gene classifiers derived and validated in HICs (SepstratifieR) to assign patients to one of three sepsis response signatures (SRS). The 19-gene classifier assigned 30 (23.4%), 92 (71.9%), and 6 (4.7%) patients to SRS-1, SRS-2, and SRS-3, respectively, the latter of which is designed to capture individuals transcriptionally closest to health. SRS-1 was defined biologically by proinflammatory innate immune activation and suppressed natural killer-cell, T-cell, and B-cell immunity, whereas SRS-2 was characterized by dampened innate immune activation, preserved lymphocyte immunity, and suppressed transcriptional responses to corticosteroids. Patients assigned to SRS-1 were predominantly (80.0% [24/30]) persons living with HIV with advanced immunosuppression and frequent tuberculosis. Mortality at 30-days differed significantly by endotype and was highest (48.1%) in SRS-1. Agreement between 19-gene and 7-gene SRS assignments was poor (Cohen's kappa 0.11). Patient stratification was suboptimal using the 7-gene classifier with 15.1% (8/53) of individuals assigned to SRS-3 deceased at 30-days. CONCLUSIONS: Sepsis endotypes derived in HICs share biological and clinical features with those identified in sub-Saharan Africa, with major differences in host-pathogen profiles. Our findings highlight the importance of context-specific sepsis endotyping, the generalizability of conserved biological signatures of critical illness across disparate settings, and opportunities to develop more pathobiologically informed sepsis treatment strategies in LMICs.


Assuntos
Sepse , Transcriptoma , Adulto , Humanos , Estudos Prospectivos , Uganda/epidemiologia , Perfilação da Expressão Gênica , Corticosteroides
4.
Mol Psychiatry ; 28(6): 2355-2369, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037873

RESUMO

The discovery of prenatal and neonatal molecular biomarkers has the potential to yield insights into autism spectrum disorder (ASD) and facilitate early diagnosis. We characterized metabolomic profiles in ASD using plasma samples collected in the Norwegian Autism Birth Cohort from mothers at weeks 17-21 gestation (maternal mid-gestation, MMG, n = 408) and from children on the day of birth (cord blood, CB, n = 418). We analyzed associations using sex-stratified adjusted logistic regression models with Bayesian analyses. Chemical enrichment analyses (ChemRICH) were performed to determine altered chemical clusters. We also employed machine learning algorithms to assess the utility of metabolomics as ASD biomarkers. We identified ASD associations with a variety of chemical compounds including arachidonic acid, glutamate, and glutamine, and metabolite clusters including hydroxy eicospentaenoic acids, phosphatidylcholines, and ceramides in MMG and CB plasma that are consistent with inflammation, disruption of membrane integrity, and impaired neurotransmission and neurotoxicity. Girls with ASD have disruption of ether/non-ether phospholipid balance in the MMG plasma that is similar to that found in other neurodevelopmental disorders. ASD boys in the CB analyses had the highest number of dysregulated chemical clusters. Machine learning classifiers distinguished ASD cases from controls with area under the receiver operating characteristic (AUROC) values ranging from 0.710 to 0.853. Predictive performance was better in CB analyses than in MMG. These findings may provide new insights into the sex-specific differences in ASD and have implications for discovery of biomarkers that may enable early detection and intervention.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Masculino , Criança , Gravidez , Feminino , Recém-Nascido , Humanos , Transtorno do Espectro Autista/metabolismo , Sangue Fetal/metabolismo , Teorema de Bayes , Biomarcadores
5.
J Child Psychol Psychiatry ; 65(5): 610-619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36973172

RESUMO

BACKGROUND: Delays and loss of early-emerging social-communication skills are often discussed as unique to autism. However, most studies of regression have relied on retrospective recall and clinical samples. Here, we examine attainment and loss of social-communication skills in the population-based Norwegian Mother, Father and Child Cohort Study (MoBa). METHODS: Mothers rated their child's attainment of 10 early-emerging social-communication skills at ages 18 and 36 months (N = 40,613, 50.9% male). Prospectively reported loss was defined as skill presence at 18 months but absence at 36 months. At 36 months, mothers also recalled whether the child had lost social-communication skills. The Norwegian Patient Registry was used to capture diagnoses of Autism Spectrum Disorder (autism) and other neurodevelopmental disabilities (NDDs). RESULTS: Delay in at least one skill was observed in 14% of the sample and loss in 5.4%. Recalled loss of social-communication skills was rare (0.86%) and showed low convergence with prospectively reported loss. Delay and especially loss were associated with elevated odds of an autism diagnosis (n = 383) versus no autism diagnosis (n = 40,230; ≥3 skills delayed: OR = 7.09[4.15,12.11]; ≥3 skills lost: OR = 30.66[17.30,54.33]). They were also associated with an increased likelihood of autism compared to some other NDDs. Delay (relative risk [RR] = 4.16[2.08, 8.33]) and loss (RR = 10.00[3.70, 25.00]) associated with increased likelihood of autism versus ADHD, and loss (RR = 4.35[1.28,14.29]), but not delay (RR = 2.00[0.78,5.26]), associated with increased likelihood of autism compared to language disability. Conversely, delay conferred decreased likelihood of autism versus intellectual disability (RR = 0.11[0.06,0.21]), and loss was not reliably associated with likelihood of autism versus intellectual disability (RR = 1.89[0.44,8.33]). CONCLUSIONS: This population-based study suggests that loss of early social communication skills is more common than studies using retrospective reports have indicated and is observed across several NDD diagnoses (not just autism). Nevertheless, most children with NDD diagnoses showed no reported delay or loss in these prospectively measured skills.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Criança , Feminino , Humanos , Masculino , Mães , Estudos de Coortes , Transtorno do Espectro Autista/diagnóstico , Estudos Retrospectivos , Deficiência Intelectual/complicações , Comunicação , Idioma , Pai
6.
J Virol ; 96(6): e0175721, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107373

RESUMO

Emerging viruses impose global threats to animal and human populations and may bear novel genes with limited homology to known sequences, necessitating the development of novel approaches to infer and test protein functions. This challenge is dramatically evident in tilapia lake virus (TiLV), an emerging "orthomyxo-like" virus that threatens the global tilapia aquaculture and food security of millions of people. The majority of TiLV proteins have no homology to known sequences, impeding functionality assessments. Using a novel bioinformatics approach, we predicted that TiLV's Protein 4 encodes the nucleoprotein, a factor essential for viral RNA replication. Multiple methodologies revealed the expected properties of orthomyxoviral nucleoproteins. A modified yeast three-hybrid assay detected Protein 4-RNA interactions, which were independent of the RNA sequence, and identified specific positively charged residues involved. Protein 4-RNA interactions were uncovered by R-DeeP and XRNAX methodologies. Immunoelectron microscopy found that multiple Protein 4 copies localized along enriched ribonucleoproteins. TiLV RNA from cells and virions coimmunoprecipitated with Protein 4. Immunofluorescence microscopy detected Protein 4 in the cytoplasm and nuclei, and nuclear Protein 4 increased upon CRM1 inhibition, suggesting CRM1-dependent nuclear export of TiLV RNA. Together, these data reveal TiLV's nucleoprotein and highlight the ability to infer protein functionality, including novel RNA-binding proteins, in emerging pathogens. These are important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens. IMPORTANCE Tilapia is an important source of dietary protein, especially in developing countries. Massive losses of tilapia were identified worldwide, risking the food security of millions of people. Tilapia lake virus (TiLV) is an emerging pathogen responsible for these disease outbreaks. TiLV's genome encodes 10 major proteins, 9 of which show no homology to other known viral or cellular proteins, hindering functionality assessment of these proteins. Here, we describe a novel bioinformatics approach to infer the functionality of TiLV proteins, which predicted Protein 4 as the nucleoprotein, a factor essential for viral RNA replication. We provided experimental support for this prediction by applying multiple molecular, biochemical, and imaging approaches. Overall, we illustrate a strategy for functional analyses in viral discovery. The strategy is important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens.


Assuntos
Nucleoproteínas , Vírus de RNA , Tilápia , Animais , Doenças dos Peixes/virologia , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/patogenicidade , RNA Viral/genética , Tilápia/genética
7.
J Transl Med ; 21(1): 322, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179299

RESUMO

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracellular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small studies have previously described plasma proteins or protein pathways that are associated with ME/CFS. METHODS: We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex assay and differences between patients and controls were assessed. We then performed multi-omic statistical analyses that considered not only this new data, but extensive clinical data describing the health of the subjects. RESULTS: ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins. CONCLUSIONS: These findings add to the substantial number of objective differences in biomolecules that have been identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.


Assuntos
Citocinas , Síndrome de Fadiga Crônica , Humanos , Proteômica , Comunicação Celular , Estudos de Casos e Controles
8.
J Neurovirol ; 29(6): 678-691, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37851324

RESUMO

Unbiased high-throughput sequencing (HTS) has enabled new insights into the diversity of agents implicated in central nervous system (CNS) infections. The addition of positive selection capture methods to HTS has enhanced the sensitivity while reducing sequencing costs and the complexity of bioinformatic analysis. Here we report the use of virus capture-based sequencing for vertebrate viruses (VirCapSeq-VERT) and bacterial capture sequencing (BacCapSeq) in investigating CNS infections. Thirty-four samples were categorized: (1) patients with definitive CNS infection by routine testing; (2) patients meeting clinically the Brighton criteria (BC) for meningoencephalitis; (3) patients with presumptive infectious etiology highest on the differential. RNA extracts from cerebrospinal fluid (CSF) were used for VirCapSeq-VERT, and DNA extracts were used for BacCapSeq analysis. Among 8 samples from known CNS infections in group 1, VirCapSeq and BacCapSeq confirmed 3 expected diagnoses (42.8%), were negative in 2 (25%), yielded an alternative result in 1 (11.1%), and did not detect 2 expected negative pathogens. The confirmed cases identified HHV-6, HSV-2, and VZV while the negative samples included JCV and HSV-2. In groups 2 and 3, 11/26 samples (42%) were positive for at least one pathogen; however, 27% of the total samples (7/26) were positive for commensal organisms. No microbial nucleic acids were detected in negative control samples. HTS showed limited promise for pathogen identification in presumed CNS infectious diseases in our small sample. Before conducting larger-scale prospective studies to assess the clinical value of this novel technique, clinicians should understand the benefits and limitations of using this modality.


Assuntos
Meningoencefalite , Vírus , Humanos , Estudos Prospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Herpesvirus Humano 2/genética
9.
Mol Psychiatry ; 27(3): 1527-1541, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34987169

RESUMO

Epidemiological studies and work in animal models indicate that immune activation may be a risk factor for autism spectrum disorders (ASDs). We measured levels of 60 cytokines and growth factors in 869 maternal mid-gestational (MMG) and 807 child cord blood (CB) plasma samples from 457 ASD (385 boys, 72 girls) and 497 control children (418 boys, 79 girls) from the Norwegian Autism Birth Cohort. We analyzed associations first using sex-stratified unadjusted and adjusted logistic regression models, and then employed machine learning strategies (LASSO + interactions, Random Forests, XGBoost classifiers) with cross-validation and randomly sampled test set evaluation to assess the utility of immune signatures as ASD biomarkers. We found prominent case-control differences in both boys and girls with alterations in a wide range of analytes in MMG and CB plasma including but not limited to IL1RA, TNFα, Serpin E1, VCAM1, VEGFD, EGF, CSF1, and CSF2. MMG findings were most striking, with particularly strong effect sizes in girls. Models did not change appreciably upon adjustment for maternal conditions, medication use, or emotional distress ratings. Findings were corroborated using machine learning approaches, with area under the receiver operating characteristic curve values in the test sets ranging from 0.771 to 0.965. Our results are consistent with gestational immunopathology in ASD, may provide insights into sex-specific differences, and have the potential to lead to biomarkers for early diagnosis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/etiologia , Transtorno Autístico/complicações , Biomarcadores , Estudos de Casos e Controles , Feminino , Sangue Fetal , Humanos , Masculino
10.
Proc Natl Acad Sci U S A ; 117(46): 29190-29201, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139552

RESUMO

Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.


Assuntos
Quirópteros/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/veterinária , Infecções por Henipavirus/virologia , Vírus Nipah/classificação , Vírus Nipah/genética , Animais , Ásia , Bangladesh/epidemiologia , Surtos de Doenças , Feminino , Especificidade de Hospedeiro , Humanos , Imunidade , Masculino , Modelos Biológicos , Epidemiologia Molecular , Vírus Nipah/imunologia , Filogenia , Zoonoses/epidemiologia , Zoonoses/imunologia , Zoonoses/transmissão , Zoonoses/virologia
11.
Crit Care ; 26(1): 36, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35130948

RESUMO

BACKGROUND: The global burden of sepsis is concentrated in sub-Saharan Africa, where severe infections disproportionately affect young, HIV-infected adults and high-burden pathogens are unique. In this context, poor understanding of sepsis immunopathology represents a crucial barrier to development of locally-effective treatment strategies. We sought to determine inter-individual immunologic heterogeneity among adults hospitalized with sepsis in a sub-Saharan African setting, and characterize associations between immune subtypes, infecting pathogens, and clinical outcomes. METHODS: Among a prospective observational cohort of 288 adults hospitalized with suspected sepsis in Uganda, we applied machine learning methods to 14 soluble host immune mediators, reflective of key domains of sepsis immunopathology (innate and adaptive immune activation, endothelial dysfunction, fibrinolysis), to identify immune subtypes in randomly-split discovery (N = 201) and internal validation (N = 87) sub-cohorts. In parallel, we applied similar methods to whole-blood RNA-sequencing data from a consecutive subset of patients (N = 128) to identify transcriptional subtypes, which we characterized using biological pathway and immune cell-type deconvolution analyses. RESULTS: Unsupervised clustering consistently identified two immune subtypes defined by differential activation of pro-inflammatory innate and adaptive immune pathways, with transcriptional evidence of concomitant CD56(-)/CD16( +) NK-cell expansion, T-cell exhaustion, and oxidative-stress and hypoxia-induced metabolic and cell-cycle reprogramming in the hyperinflammatory subtype. Immune subtypes defined by greater pro-inflammatory immune activation, T-cell exhaustion, and metabolic reprogramming were consistently associated with a high-prevalence of severe and often disseminated HIV-associated tuberculosis, as well as more extensive organ dysfunction, worse functional outcomes, and higher 30-day mortality. CONCLUSIONS: Our results highlight unique host- and pathogen-driven features of sepsis immunopathology in sub-Saharan Africa, including the importance of severe HIV-associated tuberculosis, and reinforce the need to develop more biologically-informed treatment strategies in the region, particularly those incorporating immunomodulation.


Assuntos
Infecções por HIV , Sepse , Tuberculose , Humanos , Prognóstico , Uganda/epidemiologia
12.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887252

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease characterized by unexplained physical fatigue, cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. People with ME/CFS often report a prodrome consistent with infections. Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of plasma from 106 ME/CFS cases and 91 frequency-matched healthy controls. Subjects in the ME/CFS group had significantly decreased levels of plasmalogens and phospholipid ethers (p < 0.001), phosphatidylcholines (p < 0.001) and sphingomyelins (p < 0.001), and elevated levels of dicarboxylic acids (p = 0.013). Using machine learning algorithms, we were able to differentiate ME/CFS or subgroups of ME/CFS from controls with area under the receiver operating characteristic curve (AUC) values up to 0.873. Our findings provide the first metabolomic evidence of peroxisomal dysfunction, and are consistent with dysregulation of lipid remodeling and the tricarboxylic acid cycle. These findings, if validated in other cohorts, could provide new insights into the pathogenesis of ME/CFS and highlight the potential use of the plasma metabolome as a source of biomarkers for the disease.


Assuntos
Síndrome de Fadiga Crônica , Teorema de Bayes , Biomarcadores , Estudos de Casos e Controles , Humanos , Metabolômica
13.
Emerg Infect Dis ; 27(12): 3185-3188, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34708683

RESUMO

In June 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases surged in Liberia. SARS-CoV-2 sequences from patients hospitalized during March-July 2021 revealed the Delta variant was in Liberia in early March and was dominant in June, irrespective of geography. Mutations and deletions suggest multiple SARS-CoV-2 Delta variant introductions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Libéria/epidemiologia , Análise de Sequência
14.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331815

RESUMO

The G12 rotaviruses are an increasingly important cause of severe diarrhoea in infants and young children worldwide. Seven human G12P[6] rotavirus strains were detected in stool samples from children hospitalized with gastroenteritis in Lebanon during a 2011-2013 surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture-based high-throughput viral-sequencing method, and further characterized based on phylogenetic analyses with global RVA and vaccine strains. Based on the complete genomic analysis, all Lebanese G12 strains were found to have Wa-like genetic backbone G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Phylogenetically, these strains fell into two clusters where one of them might have emerged from Southeast Asian strains and the second one seems to have a mixed backbone between North American and Southeast Asian strains. Further analysis of these strains revealed high antigenic variability compared to available vaccine strains. To our knowledge, this is the first report on the complete genome-based characterization of G12P[6] emerging in Lebanon. Additional studies will provide important insights into the evolutionary dynamics of G12 rotaviruses spreading in Asia.


Assuntos
Gastroenterite/virologia , Genoma Viral , Infecções por Rotavirus/virologia , Rotavirus/genética , Rotavirus/isolamento & purificação , Proteínas Virais/genética , Antígenos Virais/química , Antígenos Virais/imunologia , Sudeste Asiático , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Pré-Escolar , Epitopos , Evolução Molecular , Feminino , Glicosilação , Humanos , Lactente , Recém-Nascido , Líbano , Masculino , América do Norte , Filogenia , Rotavirus/química , Rotavirus/imunologia , Vacinas contra Rotavirus/imunologia , Vacinas Atenuadas/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia
15.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801868

RESUMO

Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with severe acute respiratory syndrome (SARS)-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two Middle East respiratory syndrome (MERS)-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate the infection of human gut cells but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that the addition of exogenous trypsin also rescues HKU5-CoV, a second bat group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate the emergence potential of bat CoVs and offers a means to recover previously unrecoverable zoonotic CoV strains.IMPORTANCE Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding and proteolytic cleavage of the spike are critical factors that must be considered for evaluating the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue that other tissues, including the digestive tract, could be a site for future coronavirus emergence events in humans.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Células CACO-2 , Quirópteros , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Humanos , Tripsina , Células Vero , Zoonoses/metabolismo , Zoonoses/virologia
16.
J Child Psychol Psychiatry ; 62(9): 1070-1078, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33369747

RESUMO

BACKGROUND: Delayed walking is common in intellectual disability (ID) but may be less common when ID occurs with autism spectrum disorder (ASD). Previous studies examining this were limited by reliance on clinical samples and exclusion of children with severe motor deficits. OBJECTIVE: To examine in a population-based sample if age of walking is differentially related to intellectual ability in children with ASD versus other neurodevelopmental disorders (NDD). METHODS: Participants were from the nested Autism Birth Cohort Study of the Norwegian Mother, Father and Child Cohort Study (MoBa). Cox proportional hazards regression assessed if diagnosis (ASD n = 212 vs. NDD n = 354), continuous nonverbal IQ, and their interaction, were associated with continuous age of walking. RESULTS: The relationship between nonverbal IQ and age of walking was stronger for NDD than for ASD (Group × nonverbal IQ interaction, χ2  = 13.93, p = .0002). This interaction was characterized by a 21% decrease in the likelihood of walking onset at any given time during the observation period per 10-point decrease in nonverbal IQ (hazard ratio = 0.79, 95% CI: 0.78-0.85) in the NDD group compared to 8% (hazard ratio = 0.92, 95% CI: 0.86-0.98) in the ASD group. CONCLUSIONS: The finding that age of walking is less strongly related to low intellectual ability in children with ASD than in children without other NDDs supports the hypothesis that ID in ASD may result from heterogeneous developmental pathways. Late walking may be a useful stratification variable in etiological research focused on ASD and other NDDs.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/epidemiologia , Criança , Estudos de Coortes , Humanos , Deficiência Intelectual/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Caminhada
18.
BMC Bioinformatics ; 20(1): 110, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832568

RESUMO

BACKGROUND: Existing tools for the aggregation and visualization of differential expression data have discrete functionality and require that end-users rely on multiple software packages with complex dependencies or manually manipulate data for analysis and interpretation. Furthermore, at present, data aggregation and visualization are laborious, time consuming, and subject to human error. This is a serious limitation on the current state of differential transcriptomic analysis, which makes it necessary to expend extensive time and resources to reach the point where biological meaning can be interpreted. Such an approach for analysis also leads to scattered and non-standardized code, unsystematic project management and non-reproducible result sets. RESULTS: Here, we present a differential expression analysis toolkit, DEvis, that provides a powerful, integrated solution for the analysis of differential expression data with a rapid turnaround time. DEvis has simple installation requirements and provides a convenient, user-friendly R package that addresses the issues inherent to complex multi-factor experiments, such as multiple contrast aggregation and integration, result sorting and selection, visualization, project management, and reproducibility. This tool increases the capabilities of differential expression analysis while reducing workload and the potential for manual error. Furthermore, it provides a much-needed encapsulation of scattered functionality, making large and complex analysis more efficient and reproducible. CONCLUSION: DEvis provides a wide range of powerful visualization, data aggregation, and project management tools that provide flexibility and speed in analysis. The functionality provided by DEVis increases efficiency of analysis and supplies researchers with new and relevant means for the analysis of large and complicated transcriptomic experiments. DEvis furthermore incorporates automatic project management capabilities, which standardizes analysis and ensures the reproducibility of results. After the establishment of statistical frameworks that identify differentially expressed genes, this package is the next logical step for differential transcriptomic analysis, establishing the critical framework necessary to manipulate, explore, and extract biologically relevant meaning from differential expression data.


Assuntos
Agregação de Dados , Perfilação da Expressão Gênica , Software , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma/genética
19.
Clin Infect Dis ; 68(7): 1118-1125, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30099510

RESUMO

BACKGROUND: Precision public health is a novel set of methods to target disease prevention and mitigation interventions to high-risk subpopulations. We applied a precision public health strategy to syndromic surveillance for severe acute respiratory infection (SARI) in Uganda by combining spatiotemporal analytics with genomic sequencing to detect and characterize viral respiratory pathogens with epidemic potential. METHODS: Using a national surveillance network we identified patients with unexplained, influenza-negative SARI from 2010 to 2015. Spatiotemporal analyses were performed retrospectively to identify clusters of unexplained SARI. Within clusters, respiratory viruses were detected and characterized in naso- and oropharyngeal swab samples using a novel oligonucleotide probe capture (VirCapSeq-VERT) and high-throughput sequencing platform. Linkage to conventional epidemiologic strategies further characterized transmission dynamics of identified pathogens. RESULTS: Among 2901 unexplained SARI cases, 9 clusters were detected, accounting for 301 (10.4%) cases. Clusters were more likely to occur in urban areas and during biannual rainy seasons. Within detected clusters, we identified an unrecognized outbreak of measles-associated SARI; sequence analysis implicated cocirculation of endemic genotype B3 and genotype D4 likely imported from England. We also detected a likely nosocomial SARI cluster associated with a novel picobirnavirus most closely related to swine and dromedary viruses. CONCLUSIONS: Using a precision approach to public health surveillance, we detected and characterized the genomics of vaccine-preventable and zoonotic respiratory viruses associated with clusters of severe respiratory infections in Uganda. Future studies are needed to assess the feasibility, scalability, and impact of applying similar approaches during real-time public health surveillance in low-income settings.


Assuntos
Monitoramento Epidemiológico , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Viroses/diagnóstico , Viroses/epidemiologia , Vírus/classificação , Vírus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise por Conglomerados , Surtos de Doenças , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular/métodos , Hibridização de Ácido Nucleico , Estudos Retrospectivos , Análise Espaço-Temporal , Uganda/epidemiologia , Vírus/genética , Adulto Jovem
20.
J Gen Virol ; 100(10): 1350-1362, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513008

RESUMO

Recent advances in high-throughput sequencing technology have led to a rapid expansion in the number of viral sequences associated with samples from vertebrates, invertebrates and environmental samples. Accurate host identification can be difficult in assays of complex samples that contain more than one potential host. Using unbiased metagenomic sequencing, we investigated wild house mice (Mus musculus) and brown rats (Rattus norvegicus) from New York City to determine the aetiology of liver disease. Light microscopy was used to characterize liver disease, and fluorescent microscopy with in situ hybridization was employed to identify viral cell tropism. Sequences representing two novel negative-sense RNA viruses were identified in homogenates of wild house mouse liver tissue: Amsterdam virus and Fulton virus. In situ hybridization localized viral RNA to Capillaria hepatica, a parasitic nematode that had infected the mouse liver. RNA from either virus was found within nematode adults and unembryonated eggs. Expanded PCR screening identified brown rats as a second rodent host for C. hepatica as well as both nematode-associated viruses. Our findings indicate that the current diversity of nematode-associated viruses may be underappreciated and that anatomical imaging offers an alternative to computational host assignment approaches.


Assuntos
Animais Selvagens/parasitologia , Capillaria/virologia , Infecções por Enoplida/veterinária , Vírus de RNA/isolamento & purificação , Doenças dos Roedores/parasitologia , Animais , Capillaria/fisiologia , Infecções por Enoplida/parasitologia , Evolução Molecular , Fígado/parasitologia , Camundongos , Cidade de Nova Iorque , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA