Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurochem Res ; 43(7): 1424-1438, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882124

RESUMO

Bisperoxovanadium (pyridine-2-carboxyl) [bpV(pic)] is a commercially available PTEN inhibitor. Previous studies from us and others have shown that bpV(pic) confers neuroprotection in cerebral ischemia injury. We set up to determine whether ERK 1/2 activation plays a role in bpV(pic)-induced neuroprotective effect in cerebral ischemia injury. We found that the phosphorylation levels of Akt (p-AKT) and ERK1/2 (p-ERK 1/2) were down-regulated after cerebral ischemia-reperfusion injury. The injection of bpV(pic) after injury not only increased the level of p-AKT but also the level of p-ERK 1/2. While the inhibition of PTEN mediated the up-regulatation of p-AKT and p-ERK 1/2 by bpV(pic). Interestingly, the ERK 1/2 activation induced by bpV(pic) was also independent of the inhibition of PTEN. Our results indicate that bpV(pic) protects against OGD-induced neuronal death and promotes the functional recovery of stroke animals through PTEN inhibition and ERK 1/2 activation, respectively. This study suggests that the effect of bpV(pic) on ERK 1/2 signaling should be considered while using bpV(pic) as a PTEN inhibitor.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Compostos de Vanádio/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos
2.
J Neurochem ; 134(3): 566-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25903928

RESUMO

Middle cerebral artery occlusion (MCAO) induces secondary damages in the hippocampus that is remote from primary ischemic regions. Tau hyperphosphorylation is an important risk for neurodegenerative diseases. Increased tau phosphorylation has been identified in ischemic cortex, but little is known regarding the changes in the hippocampus. We showed that unilateral transient MCAO induced accumulation of hyperphosphorylated tau and concurrent dephosphorylation of glycogen synthase kinase-3ß at Ser 9 in the ipsilateral hippocampus. These MCAO-induced changes were not reproduced when glutamatergic inputs from the entorhinal cortex to the hippocampus were transected; however, the changes were mimicked by intrahippocampal N-methyl-d-aspartate (NMDA) administration. Inhibition of NMDA receptor (NMDAR) subunit NR2B, but not NR2A activity in the hippocampus attenuated the accumulation of hyperphosphorylated tau and spatial cognitive impairment in MCAO rats. Together, our data suggest that overactivation of NR2B-containing NMDARs through entorhinal-hippocampal connection plays an important role in the accumulation of hyperphosphorylated tau in the hippocampus following MCAO. Glycogen synthase kinase-3ß is an important protein kinase involved in NMDARs-mediated tau hyperphosphorylation. This study indicates that early inhibition of NR2B-containing NMDARs may represent a potential strategy to prevent or delay the occurrence of post-stroke dementia. Middle cerebral artery occlusion induces secondary damage in the hippocampus that is remote from primary ischemic regions. We propose that excessive activation of NR2B-containing NMDA receptors through entorhinal-hippocampal connection initiated the accumulation of hyperphosphorylated tau in the hippocampus, which subsequently induced cognitive deficit. This study provides new insights into the prospects of NR2B inhibition in stoke therapy.


Assuntos
Lateralidade Funcional/fisiologia , Hipocampo/patologia , Infarto da Artéria Cerebral Média/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas tau/metabolismo , Animais , Western Blotting , Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Vias Neurais/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley
3.
Exp Neurol ; 327: 113214, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31987833

RESUMO

l-lysine is a basic amino acid that has been shown to exert neuroprotective effect. However, the underlying mechanism remains to be elucidated. In this study, we investigate how l-lysine exerts its neuroprotective effect in hemin-insulted mouse cortical neurons in vitro and the mouse model of intracerebral hemorrhage (ICH) in vivo. We demonstrate that l-lysine treatment promotes M2 microglial polarization and reduces inflammatory response both in vitro and in vivo, suggesting that l-lysine may play a neuroprotective role in ICH injury. Indeed, we show that l-lysine treatment reduces cortical neuronal death after hemin insult in vitro and decrease the number of degenerating neurons after ICH in vivo. l-lysine also improves the functional recovery of ICH animals in neurobehavioral tests. Consistent with the role of PTEN in regulating inflammatory response, we find that PTEN inhibition promotes M2 microglial polarization and suppresses pro-inflammatory response in mouse ICH injury, which contribute to the neuroprotective effect of l-lysine. Moreover, our results reveal that microRNA-575 directly suppressed PTEN to promote M2 microglial polarization and mediate the neuroprotective effect of l-lysine in ICH injury. Together, our results suggest that l-lysine confers neuroprotection after ICH injury through enhancing M2 microglial polarization and reducing inflammatory response, which is mediated by microRNA-575 upregulation and subsequent PTEN downregulation.


Assuntos
Hemorragia Cerebral/metabolismo , Inflamação/tratamento farmacológico , Lisina/farmacologia , MicroRNAs/metabolismo , Fármacos Neuroprotetores/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Polaridade Celular/efeitos dos fármacos , Hemorragia Cerebral/complicações , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Inflamação/etiologia , Inflamação/metabolismo , Lisina/uso terapêutico , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Regulação para Cima/efeitos dos fármacos
4.
J Alzheimers Dis ; 66(3): 1001-1014, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30372676

RESUMO

DJ-1 (also called PARK7) is a multifunctional redox-sensitive protein that is protective against oxidative stress-induced cell death. TAR DNA-binding protein 43 (TDP-43) is a major protein component of pathological inclusions in amyotrophic lateral sclerosis and frontotemporal dementia. Reducing aberrant aggregation of TDP-43 is a potential approach to prevent cell death. To investigate whether DJ-1 might inhibit TDP-43 aggregation to exert a protective effect in oxidative stress-induced injury, we tested the protein level and subcellular localization of TDP-43 and DJ-1 in SH-SY5Y cells transfected with wild-type DJ-1, DJ-1 mutant (L166P) cDNA, or DJ-1 siRNA. We show that oxidative stress induced by paraquat leads to the formation of cytosolic TDP-43 aggregation in SH-SY5Y cells. DJ-1 overexpression decreases paraquat-induced cytoplasmic accumulation of TDP-43 in SH-SY5Y cells and protects against paraquat-induced cell death. Transfection of DJ-1 L166P mutant or DJ-1 siRNA leads to increased cytosolic aggregation of TDP-43 in paraquat-treated SH-SY5Y cells and promotes cell death. These data suggest that DJ-1 may protect against oxidative stress-induced cell death through the suppression of cytoplasmic TDP-43 aggregation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Proteína Desglicase DJ-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Linhagem Celular Tumoral , Humanos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Fosforilação , Proteína Desglicase DJ-1/metabolismo
5.
Cancer Med ; 7(7): 2848-2859, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29777576

RESUMO

Glioblastoma (GBM) is the most aggressive glioma in the brain. Recurrence of GBM is almost inevitable within a short term after tumor resection. In a retrospective study of 386 cases of GBM collected between 2013 and 2016, we found that recurrence of GBM mainly occurs in the deep brain regions, including the basal ganglia, thalamus, and corpus callosum. But the mechanism underlying this phenomenon is not clear. Previous studies suggest that neuroligin-3 (NLGN3) is necessary for GBM growth. Our results show that the levels of NLGN3 in the cortex are higher than those in the deep regions in a normal human brain, and similar patterns are also found in a normal mouse brain. In contrast, NLGN3 levels in the deep brain regions of GBM patients are high. We also show that an increase in NLGN3 concentration promotes the growth of U251 cells and U87-MG cells. Respective use of the cortex neuron culture medium (C-NCM) and basal ganglia neuron culture medium (BG-NCM) with DMEM to cultivate U251, U87-MG and GBM cells isolated from patients, we found that these cells grew faster after treatment with C-NCM and BG-NCM in which the cells treated with C-NCM grew faster than the ones treated with BG-NCM group. Inhibition of NLGN3 release by ADAM10i prevents NCM-induced cell growth. Together, this study suggests that increased levels of NLGN3 in the deep brain region under the GBM pathological circumstances may contribute to GBM recurrence in the basal ganglia, thalamus, and corpus callosum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA