Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547056

RESUMO

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Assuntos
Amoeba , Linhagem Celular Tumoral , Movimento Celular , Fenômenos Físicos
2.
Proc Natl Acad Sci U S A ; 121(10): e2312150121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412127

RESUMO

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Baço/patologia , Replicação Viral , Macrófagos/patologia
3.
Genomics ; 116(2): 110792, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215860

RESUMO

Eimeria tenella is the main pathogen responsible for coccidiosis in chickens. The life cycle of E. tenella is, arguably, the least complex of all Coccidia, with only one host. However, it presents different developmental stages, either in the environment or in the host and either intracellular or extracellular. Its signaling and metabolic pathways change with its different developmental stages. Until now, little is known about the developmental regulation and transformation mechanisms of its life cycle. In this study, protein profiles from the five developmental stages, including unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), sporozoites (S) and second-generation merozoites (M2), were harvested using the label-free quantitative proteomics approach. Then the differentially expressed proteins (DEPs) for these stages were identified. A total of 314, 432, 689, and 665 DEPs were identified from the comparison of SO7h vs USO, SO vs SO7h, S vs SO, and M2 vs S, respectively. By conducting weighted gene coexpression network analysis (WGCNA), six modules were dissected. Proteins in blue and brown modules were calculated to be significantly positively correlated with the E. tenella developmental stages of sporozoites (S) and second-generation merozoites (M2), respectively. In addition, hub proteins with high intra-module degree were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses revealed that hub proteins in blue modules were involved in electron transport chain and oxidative phosphorylation. Hub proteins in the brown module were involved in RNA splicing. These findings provide new clues and ideas to enhance our fundamental understanding of the molecular mechanisms underlying parasite development.


Assuntos
Eimeria tenella , Animais , Eimeria tenella/genética , Proteômica , Galinhas/parasitologia , Oocistos/fisiologia , Esporozoítos/genética , Esporozoítos/metabolismo , Estágios do Ciclo de Vida
4.
Anal Chem ; 96(1): 463-470, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38116596

RESUMO

Accurate and reliable detection of SARS-CoV-2 is critical for the effective prevention and rapid containment of COVID-19. Current approaches suffer from complex procedures or a single signal readout, resulting in an increased risk of false negatives and low sensitivity. Here, we developed a fluorescence (FL) and electrochemiluminescence (ECL) dual-mode imaging platform based on a self-powered DNAzyme walker to achieve accurate surveillance of SARS-CoV-2 spike protein at the single-molecule level. The specific activation of the DNAzyme walker by the target protein provides the power for the system's continuous running, enabling the simultaneous recording of the reduction in fluorescence spots and the appearance of ECL spots generated by the Ru-doped metal-organic framework (MOF) emitter. Therefore, the constructed imaging platform can achieve dual-mode detection of spike protein via reverse dual-signal feedback, which could effectively eliminate false-positive or false-negative signals and improve the detection accuracy and sensitivity with a low detection limit. In particular, the dual-mode accuracy of spike protein diagnosis in samples has been significantly improved compared to single-signal output means. In addition, this dual-mode imaging platform may become a prospective diagnostic device for other infectious viruses.


Assuntos
Técnicas Biossensoriais , COVID-19 , DNA Catalítico , Humanos , Glicoproteína da Espícula de Coronavírus , Medições Luminescentes/métodos , Estudos Prospectivos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , COVID-19/diagnóstico , SARS-CoV-2
5.
Small ; 20(7): e2305777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797188

RESUMO

Stimulus-responsive mode is highly desirable for improving the precise monitoring and physiological efficacy of endogenous biomarkers (EB). However, its integrated application for visual detection and therapy is limited by inappropriate use of responsive triggers and poor delivery of EB signal-transducing agents, which remain challenging in simultaneous monitoring and noninvasive therapy of EB and EB-mediated pathological events. Target microRNA (miRNA) as controllable reaction triggers and DNAzyme as signal-transducing agent are proposed to develop target-stimulated multifunctional nanocabinets (MFNCs) for the visual tracking of both miRNA and miRNA-mediated anticancer events. The MFNCs, equipped with a target-discriminating sequence-incorporated DNAzyme motif, can specifically release therapeutic molecules through target-triggered conformational switches, accompanied by transduction signal output. Target detection and molecule release performance are recorded in parallel via reverse dual-signal feedback at the single-molecule level. In addition, the intrinsic thermal-replenishing of the MFNCs leads to tumor ablation without invasive exogenous aids. The system achieves visual target quantification, anticancer molecule real-time tracking, and tumor suppression in vivo and in vitro. This work proposes a new paradigm for precise visual exploration of EB or EB-mediated bio-events and provides a demonstration of efficacious all-in-one detection and therapy based on the target-triggered multifunctional nanosystem.


Assuntos
DNA Catalítico , MicroRNAs , Neoplasias , Humanos , Retroalimentação , MicroRNAs/genética , Neoplasias/tratamento farmacológico
6.
Anal Bioanal Chem ; 416(9): 2107-2115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135761

RESUMO

Cell migration is an essential manner of different cell lines that are involved in embryological development, immune responses, tumorigenesis, and metastasis in vivo. Physical confinement derived from crowded tissue microenvironments has pivotal effects on migratory behaviors. Distinct migration modes under a heterogeneous extracellular matrix (ECM) have been extensively studied, uncovering potential molecular mechanisms involving a series of biological processes. Significantly, multi-omics strategies have been launched to provide multi-angle views of complex biological phenomena, facilitating comprehensive insights into molecular regulatory networks during cell migration. In this review, we describe biomimetic devices developed to explore the migratory behaviors of cells induced by different types of confined microenvironments in vitro. We also discuss the results of multi-omics analysis of intrinsic molecular alterations and critical pathway dysregulations of cell migration under heterogeneous microenvironments, highlighting the significance of physical confinement-triggered intracellular signal transduction in order to regulate cellular behaviors. Finally, we discuss both the challenges and promise of mechanistic analysis in confinement-induced cell migration, promoting the development of early diagnosis and precision therapeutics.


Assuntos
Matriz Extracelular , Multiômica , Humanos , Movimento Celular , Matriz Extracelular/metabolismo , Transdução de Sinais , Transformação Celular Neoplásica , Microambiente Tumoral
7.
Nano Lett ; 23(14): 6727-6735, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459599

RESUMO

Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.


Assuntos
Movimento Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermediários , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vimentina/metabolismo , Humanos , Células HeLa
8.
Angew Chem Int Ed Engl ; : e202407588, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742673

RESUMO

Electrochemiluminescence (ECL) is rapidly evolving from an analytical method into an optical microscopy. The orthogonality of the electrochemical trigger and the optical readout distinguishes it from classic microscopy and electrochemical techniques, owing to its near-zero background, remarkable sensitivity, and absence of photobleaching and phototoxicity. In this minireview, we summarize the recent advances in ECL imaging technology, emphasizing original configurations which enable the imaging of biological entities and the improvement of the analytical properties by increasing the complexity and multiplexing of bioassays. Additionally, mapping the (electro)chemical reactivity in space provides valuable information on nanomaterials and facilitates deciphering ECL mechanisms for improving their performances in diagnostics and (electro)catalysis. Finally, we highlight the recent achievements in imaging at the ultimate limits of single molecules, single photons or single chemical reactions, and the current challenges to translate the ECL imaging advances to other fields such as material science, catalysis and biology.

9.
J Proteome Res ; 22(9): 2785-2802, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562054

RESUMO

Proteome-wide lysine acetylation has been documented in apicomplexan parasite Toxoplasma gondii and Plasmodium falciparum. Here, we conducted the first lysine acetylome in unsporulated oocysts (USO), sporulated 7 h oocysts (SO 7h), sporulated oocysts (SO), sporozoites (S), and the second generation merozoites (SMG) of Eimeria tenella through a 4D label-free quantitative technique. Altogether, 8532 lysine acetylation sites on 2325 proteins were identified in E. tenella, among which 5445 sites on 1493 proteins were quantified. In addition, 557, 339, 478, 248, 241, and 424 differentially expressed proteins were identified in the comparisons SO7h vs USO, SO vs SO7h, SO vs USO, S vs SO, SMG vs S, and USO vs SMG, respectively. The bioinformatics analysis of the acetylome showed that the lysine acetylation is widespread on proteins of diverse functions. Moreover, the dynamic changes of lysine acetylome among E. tenella different life stages revealed significant regulation during the whole process of E. tenella growth and stage conversion. This study provides a beginning for the investigation of the regulate role of lysine acetylation in E. tenella and may provide new strategies for anticoccidiosis drug and vaccine development. Raw data are publicly available at iProX with the data set identifier PXD040368.


Assuntos
Eimeria tenella , Animais , Acetilação , Eimeria tenella/genética , Eimeria tenella/metabolismo , Lisina/metabolismo , Oocistos/metabolismo , Esporozoítos/metabolismo
10.
Anal Chem ; 95(41): 15276-15285, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782295

RESUMO

Small extracellular vesicles (sEVs) have emerged as noninvasive biomarkers in liquid biopsy due to their significant function in pathology and physiology. However, the phenotypic heterogeneity of sEVs presents a significant challenge to their study and has significant implications for their applications in liquid biopsies. In this study, anodic aluminum oxide films with different pore sizes (AAO nanoarray) were introduced to enable size-based isolation and downstream proteomics profiling of sEV subpopulations. The adjustable pore size and abundant Al3+ on the framework of AAOs allowed size-dependent isolation of sEV subpopulations through nanoconfined effects and Lewis acid-base interaction between AAOs and sEVs. Benefiting from the strong concerted effect, the simple AAO nanoarray enabled specific isolation of three sEV subpopulations, termed "50", "90", and "150 nm" groups, from 10 µL of complex biological samples within 10 min with high capture efficiencies and purities. Moreover, the nanopores of AAOs also acted as nanoreactors for comprehensive proteomic profiling of the captured sEV subpopulations to reveal their heterogeneity. The AAO nanoarray was first investigated on sEVs from a cell culture medium, where sEV subpopulations could be clearly distinguished, and three traditional sEV-specific proteins (CD81, CD9, and FLOT1) could be identified by proteomic analysis. A total of 3946, 3951, and 3940 proteins were identified from 50, 90, and 150 nm sEV subpopulations, respectively, which is almost twice the number compared to those obtained from the conventional approach. The concept was further applied to complex real-case sample analysis from prostate cancer patients. Machine learning and gene ontology (GO) information analysis of the identified proteins indicate that different-sized sEV subpopulations contain unique protein cargos and have distinct cellular components and molecular functions. Further receiver operating characteristic curve (ROC) analysis of the top five differential proteins from the three sEV subpopulations demonstrated the high accuracy of the proposed approach toward prostate cancer diagnosis (AUC > 0.99). More importantly, several proteins involved in focal adhesion and antigen processing and presentation pathways were found to be upregulated in prostate cancer patients, which may serve as potential biomarkers of prostate cancer. These results suggest that the sEV subpopulation-based AAO nanoarray is of great value in facilitating the early diagnosis and prognosis of cancer and opens a new avenue for sEVs in liquid biopsy.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Masculino , Humanos , Proteômica , Prognóstico , Neoplasias da Próstata/diagnóstico , Biomarcadores
11.
Small ; 19(51): e2207190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36703514

RESUMO

Accurate and rapid metabolic profiling of cerebrospinal fluid (CSF) is urgently needed but remains challenging for clinical diagnosis of central nervous system diseases and biomarker discovery. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) holds promise for metabolic analysis. Its low signal reproducibility, however, severely restricts acquisition of quantitative MS data in clinical practice. Herein, a multifunctional self-assembled AuNPs array (MSANA)-based LDI-MS platform for direct amino acids analysis and metabolic profiling in patient CSF samples is developed. MSANA featuring a highly ordered and closely packed two-dimensional nanostructure permits capture and direct analysis of aromatic amino acids by LDI-MS with high selectivity and micromolar sensitivity. Meanwhile, the MSANA-based LDI-MS platform exhibits excellent reproducibility (RSD < 10%), largely outperforming the direct matrix spotting approach widely used now (RSD < 44%). The platform is successfully used in metabolic profiling of CSF (1 µL) within minutes for discrimination of medulloblastoma patients from non-tumor controls. Taken together, the MSANA-based LDI-MS platform shows potential clinical values toward large-scale metabolic diagnostics and pathogenic mechanism study.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Metabolômica/métodos
12.
J Med Virol ; 95(8): e29041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621182

RESUMO

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Assuntos
Mpox , Vaccinia virus , Humanos , Movimento Celular , Surtos de Doenças , Células Epiteliais
13.
Angew Chem Int Ed Engl ; 62(6): e202215078, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478505

RESUMO

Nanoconfinement in mesoporous nanoarchitectures could dramatically change molecular transport and reaction kinetics during electrochemical process. A molecular-level understanding of nanoconfinement and mass transport is critical for the applications, but a proper route to study it is lacking. Herein, we develop a single nanoreactor electrochemiluminescence (SNECL) microscopy based on Ru(bpy)3 2+ -loaded mesoporous silica nanoparticle to directly visualize in situ nanoconfinement-enhanced electrochemical reactions at the single molecule level. Meanwhile, mass transport capability of single nanoreactor, reflected as long decay time and recovery ability, is monitored and simulated with a high spatial resolution. The nanoconfinement effects in our system also enable imaging single proteins on cellular membrane. Our SNECL approach may pave the way to decipher the nanoconfinement effects during electrochemical process, and build bridges between mesoporous nanoarchitectures and potential electrochemical applications.

14.
Anal Chem ; 94(2): 837-846, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34914878

RESUMO

Polymer dots (Pdots) have become attractive electrochemiluminescence (ECL) luminophores due to their facile synthesis, easy modification, and stable electrochemical and optical properties. However, their ECL efficiency is not high enough for practical applications. In this work, we proposed an ECL immunosensor based on localized surface plasmon resonance (LSPR) between AuNPs and Pdots for the determination of pancreatic cancer exosomes. Based on the finite-difference time-domain simulations and the band energy of Pdots and AuNPs, we proposed the possible LSPR mechanism. The hot electrons of plasmonic AuNPs were photoexcited to surface plasmon states by ECL emission of Pdots, and then the excited hot electrons were transferred to the conduction band of Pdots, which significantly improved the ECL efficiency of Pdots. The ECL immunosensor displayed a wide calibration range of 1.0 × 103 to 1.0 × 106 particles/mL with a detection limit of 400 particles/mL. Cancer-related protein profiling revealed high selectivity toward different expressions of exosomal surface proteins from PANC-01, HeLa, MCF-7, and HPDE6-C7 cell lines. The proposed ECL system exhibits a promising prospect for protein biomarker profiling and early cancer-related diagnosis.


Assuntos
Técnicas Biossensoriais , Exossomos , Nanopartículas Metálicas , Neoplasias Pancreáticas , Pontos Quânticos , Técnicas Eletroquímicas/métodos , Ouro , Humanos , Imunoensaio , Limite de Detecção , Medições Luminescentes , Neoplasias Pancreáticas/diagnóstico , Polímeros/química , Pontos Quânticos/química
15.
Anal Chem ; 94(9): 4030-4038, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35213802

RESUMO

Spatial imaging of RNAs in single cells is extremely charming for deciphering of regulatory mechanisms in multiple migration modes during tumor metastasis. Herein, enzyme-free-mediated cascade amplified nanoprobes were designed for in situ single-molecule imaging of dual-microRNAs (miRNAs) in switchable migrating cells. Differential expression and localization of dual-miRNAs were clearly exhibited in multiple cell lines attributed to enhanced sensitivity via the cascade signal amplification strategy. Significantly, in situ three-dimensional (3D) imaging of dual-miRNAs in transition of cell migration phenotypes was successfully reconstructed in both non-confined and confined microenvironments in vitro, of which differential spatial distribution was observed in a single cell. This is very promising for exploring key roles of spatial RNA distribution in migrating cells at the single-molecule level, which will advance revealing the molecular mechanism and physical principle in 3D cell migration in vivo.


Assuntos
MicroRNAs , Biomimética , Movimento Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Nanotecnologia , Imagem Individual de Molécula
16.
J Am Chem Soc ; 143(43): 17910-17914, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677969

RESUMO

Herein, a single biomolecule is imaged by electrochemiluminescence (ECL) using Ru(bpy)32+-doped silica/Au nanoparticles (RuDSNs/AuNPs) as the ECL nanoemitters. The ECL emission is confined to the local surface of RuDSNs leading to a significant enhancement in the intensity. To prove the concept, a single protein molecule at the electrode is initially visualized using the as-prepared RuDSN/AuNPs nanoemitters. Furthermore, the nanoemitter-labeled antibody is linked at the cellular membrane to image a single membrane protein at one cell, without the interference of current and optical background. The success in single-biomolecule ECL imaging solves the long-lasting task in the ultrasensitive ECL analysis, which should be able to provide more elegant information about the protein in cellular biology.


Assuntos
Queratina-19/química , Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Imagem Individual de Molécula/métodos , Complexos de Coordenação/química , Técnicas Eletroquímicas/métodos , Ouro/química , Humanos , Luminescência , Medições Luminescentes/métodos , Células MCF-7 , Estudo de Prova de Conceito , Compostos de Rutênio/química , Dióxido de Silício/química
17.
Anal Chem ; 93(2): 709-714, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33315384

RESUMO

Exosomes are considered promising indicators for early cancer diagnosis. The multiple protein biomarkers carried by exosomes are associated with diverse significant biological processes and are important biomarkers of cancer subtypes. However, it is challenging to sensitively and accurately quantify protein biomarkers from a few exosomes. Herein, we propose an ultrasensitive method for quantitatively profiling protein biomarkers on the surface of exosomes by integrating mass spectrometry imaging and gold nanoparticle (AuNP)-based signal amplification. Organic oligomers as mass tags and specific antibodies are modified on AuNPs to form biomarker probes. Exosomes captured by the antibody-coated gold chip are recognized by the AuNPs probes, forming a sandwich immunoassay. By mass spectrometry imaging the mass tags, multiple protein biomarkers can be quantitatively detected from the exosomes, with a limit-of-detection (LOD) down to 50 exosome particles. As a proof of concept, exosomes secreted by different breast-cancer cell subtypes, i.e. MCF-7 and MDA-MB231, were distinguished by the level of surface protein biomarkers of CD9, CD44, and epithelial cell adhesion molecule (EpCAM) acquired by the method, demonstrating that exosomes could be used for the diagnosis of cancer at subtype level. In consideration of the advantages of the ultrasensitivity, accuracy, and simplicity, the strategy has potential prospects in biomarker discovery, cellular phenotype characterization, and cancer diagnosis.


Assuntos
Exossomos/química , Imunoensaio/métodos , Espectrometria de Massas/métodos , Biomarcadores/química , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Feminino , Humanos , Receptores de Hialuronatos , Limite de Detecção , Análise Serial de Proteínas , Tetraspanina 29
18.
Small ; 17(35): e2007971, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34075696

RESUMO

Exosomes, known as nanometer-sized vesicles (30-200 nm), are secreted by many types of cells. Cancer-derived exosomes have great potential to be biomarkers for early clinical diagnosis and evaluation of cancer therapeutic efficacy. Conventional detection methods are limited to low sensitivity and reproducibility. There are hundreds of papers published with different detection methods in recent years to address these challenges. Therefore, in this review, pioneering researches about various detection strategies are comprehensively summarized and the analytical performance of these tests is evaluated. Furthermore, the exosome molecular composition (protein and nucleic acid) profiling, a single exosome profiling, and their application in clinical cancer diagnosis are reviewed. Finally, the principles and applications of machine learning method in exosomes researches are presented.


Assuntos
Exossomos , Neoplasias , Biomarcadores , Humanos , Neoplasias/diagnóstico , Proteínas , Reprodutibilidade dos Testes
19.
Analyst ; 146(2): 515-520, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33215621

RESUMO

The problem of antimicrobial resistance (AMR) is becoming increasingly serious. Bacteria producing extended spectrum beta-lactamase (ESBL), which can hydrolyze beta-lactam antibiotics, are among the most important drug resistant bacteria. Rapid AMR analysis methods are essential for identifying antibiotic resistant bacteria, which is of significant positive value to the clinical therapy of infectious disease. We developed a platform which integrates a sandwich microfluidic filter device with electrospray ionization mass spectrometry (ESI-MS). Bacterial cells were loaded in the sandwich microfluidic chip and antibiotic drugs were injected to pass through the blocked bacterial cells. By online ESI-MS analysis of the antibiotic drugs and their hydrolysis products, the AMR of the bacteria can be assessed within 30 minutes. Four Escherichia coli strains, namely two ESBL-positive and two ESBL-negative, were successfully discriminated using ampicillin and the third generation cephalosporin ceftriaxone. Considering the simplicity and high efficiency of the assay, the microfluidic chip integrated online ESI-MS system is promising in the rapid clinical diagnosis of ESBL-producing bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Espectrometria de Massas , Testes de Sensibilidade Microbiana/instrumentação , Fatores de Tempo
20.
Analyst ; 146(21): 6496-6505, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34569564

RESUMO

Osteosarcoma is the most frequent primary bone cancer, particularly among children and adolescents. The early diagnosis of osteosarcoma is significant for timely clinical treatment to reduce the mortality of patients. Exosomes play a significant role in intercellular communication and serve as promising biomarkers in liquid biopsy for the diagnosis and monitoring of tumors. Herein, we report the utility of surface-enhanced Raman scattering (SERS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of osteosarcoma. We firstly profiled the intrinsic SERS signals and MALDI-TOF mass fingerprints of different subgroups of extracellular vesicles (EVs) and the corresponding cells, demonstrating that the SERS signals and MALDI-TOF mass spectra of exosomes from different types of cells were more discriminative compared to those of large and medium EVs and the cells themselves. Then, we characterized plasma-derived exosomes of 15 osteosarcoma patients and 15 healthy volunteers using SERS and MALDI-TOF MS, revealing distinctive biochemical differences in the spectra. We further utilized a data fusion approach to combine the two types of spectroscopic techniques, differentiating osteosarcoma patients from healthy controls with higher precision than either technique. The results reveal that the non-invasive liquid biopsy method using SERS and MALDI-TOF MS fingerprinting of exosomes has great potential for rapid diagnosis of osteosarcoma.


Assuntos
Exossomos , Osteossarcoma , Adolescente , Biomarcadores , Detecção Precoce de Câncer , Humanos , Osteossarcoma/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA