Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 1257-1274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481385

RESUMO

Plant pathogenic fungi elaborate numerous detoxification strategies to suppress host reactive oxygen species (ROS), but their coordination is not well-understood. Here, we show that Sirt5-mediated protein desuccinylation in Magnaporthe oryzae is central to host ROS detoxification. SIRT5 encodes a desuccinylase important for virulence via adaptation to host oxidative stress. Quantitative proteomics analysis identified a large number of succinylated proteins targeted by Sirt5, most of which were mitochondrial proteins involved in oxidative phosphorylation, TCA cycle, and fatty acid oxidation. Deletion of SIRT5 resulted in hypersuccinylation of detoxification-related enzymes, and significant reduction in NADPH : NADP+ and GSH : GSSG ratios, disrupting redox balance and impeding invasive growth. Sirt5 desuccinylated thioredoxin Trx2 and glutathione peroxidase Hyr1 to activate their enzyme activity, likely by affecting proper folding. Altogether, this work demonstrates the importance of Sirt5-mediated desuccinylation in controlling fungal process required for detoxifying host ROS during M. oryzae infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Espécies Reativas de Oxigênio/metabolismo , Lisina/metabolismo , Estresse Oxidativo , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 125-129, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650141

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is an irreversible adverse event during the management of coronary heart disease that lacks effective controls. The underlying mechanism of MIRI still requires further investigation. Recent studies have suggested that overexpression of ATF3 protects against MIRI by regulating inflammatory responses, ferroptosis, and autophagy. The downstream target of ATF3, EGR1, also showed cardioprotective properties against MIRI by promoting autophagy. Therefore, further investigating the effect of ATF3/EGR1 pathway on MIRI-induced inflammation and autophagy is needed. Cardiomyocyte MIRI model was established by challenging H9C2 cells with hypoxia/reoxygenation (H/R). The ATF3 overexpression-H/R cell model by transfecting ATF3 plasmid into the H9C2 cell line. The transcription levels of ATF3 and EGR1 were determined using RT-qPCR, the levels of TNF-α and IL-6 were determined using ELISA kits, the protein expression of LC3 I, LC3 II, and P62 was determined via WB, and microstructure of H9C2 cell was observed by transmission electron microscopy (TEM). Overexpression of ATF3 significantly downregulated Egr1 levels, indicating that EGR1 might be the target of ATF3. By upregulating ATF3 levels, the extracellular levels of the inflammatory cytokines TNF-α and IL-6 significantly decreased, and the protein expression of the autophagy markers LC3 I, LC3 II, and P62 significantly increased. TEM results revealed that the cell line in the H/R-ATF3 group exhibited a higher abundance of autophagosome enclosures of mitochondria. The results indicated that ATF3/EGR1 may alleviate inflammation and improve autophagy in an H/R-induced MIRI model of cardiomyocytes.


Assuntos
Fator 3 Ativador da Transcrição , Autofagia , Proteína 1 de Resposta de Crescimento Precoce , Inflamação , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Fator de Necrose Tumoral alfa , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Autofagia/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Ratos , Linhagem Celular , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transdução de Sinais , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética
3.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624113

RESUMO

Boron carbonitride (BCN) films containing hybridized bonds involving B, C, and N over wide compositional ranges enable an abundant variety of new materials, properties, and applications; however, their electronic performance is still limited by the presence of structural and electronic defects, yielding sluggish mobility and electrical conductivity. This work reports on mechanically stable BCN films and their corresponding optical and electronic properties. The ternary BCN films consisting of hybridized B-C-N bonds have been achieved by varying N2 flow by the radio frequency magnetron sputtering method. The BCN films show a bandgap value ranging from 3.32 to 3.82 eV. Hall effect measurements reveal an n-type conductivity with an improved hall mobility of 226 cm2/V s at room temperature for the optimal film. The n-BCN/p-Si heterojunctions exhibit a nonlinear rectifying characteristic, where the tunneling behavior dominates the injection regimes due to the density of defects, i.e., structural disorder and impurities. Our work demonstrates the tunable electrical properties of BCN/Si p-n diodes and, thus, is beneficial for the potential application in the fields of optics, optoelectronics, and electrics.

4.
Anal Chem ; 95(31): 11732-11740, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490364

RESUMO

Currently, kinase inhibitors have been applied in the diagnosis or treatment of cancer with their unique advantages. It is of great significance to develop some comprehensive theranostic reagents based on kinase inhibitors to improve the performance of reagents for biomedical applications. Besides, tracking changes in the intracellular environment (e.g., pH) during cancer development and drug delivery is also critical for cancer research and treatment. Therefore, it is an urgent desire to design some novel multifunctional reagents based on kinase inhibitor strategies that can trace changes in the microenvironment of cancer cells. In this paper, a multifunctional theranostic reagent based on Pim-1 kinase inhibitor 5-bromobenzofuran-2-carboxylic acid is proposed. The theranostic probe binds to tumor-specific Pim-1 kinase, releases strong fluorescence, and produces cytotoxicity, thus achieving cell screening and killing effects. Furthermore, the probe can specifically target lysosomes and sensitively respond to pH. It can be used to track the pH changes in the intracellular environment under conditions of autophagy and external stimulation, as a visual tool to monitor pH fluctuations during cancer treatment. In conclusion, this simple but multifunctional theranostic reagent proposed in this work is expected to provide a promising method for cancer diagnosis and therapy.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-pim-1 , Medicina de Precisão , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Nanomedicina Teranóstica/métodos , Concentração de Íons de Hidrogênio
5.
Inorg Chem ; 62(5): 1901-1910, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36184952

RESUMO

The CO2 cycloaddition to epoxides is an efficient method for CO2 capture and storage, important not only for reducing greenhouse gas emission but also for producing cyclic carbonates, which are valuable industrial materials. In this study, we report a novel high-nuclearity titanium oxide cluster (TOC) inlayed with main-group element Pb2+, H2Ti16Pb9O24(SA)18(DMF)10(OH2)2 (denoted as 1; SA = salicylate; DMF = N,N-dimethylformamide), which has the property of visible-light absorption and has shown high catalytic activities for cycloadditions of CO2 under visible-light irradiation. The cluster was synthesized in a high yield in a facial solvothermal process. Its structure and electronic structure were characterized by single-crystal X-ray diffraction, density functional theory calculations, and complementary techniques. The cycloaddition reactions were performed under solvent-free conditions. While the catalytic activity due to the Lewis acidity was moderate, visible-light irradiation further folded the reaction rates. The turnover number reached 3400 with a turnover frequency of 120 h-1. Mechanism studies indicated a synergistic effect of the Lewis acidity and photogenerated charge carriers. The performance of 1 in reversible I2 uptake was also investigated. This study demonstrates the high potential of heterometal-decorated TOCs in the cost-effective and efficient CO2 cycloaddition reaction under mild conditions.

6.
Bioorg Chem ; 139: 106733, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517156

RESUMO

The amount of copper ions in the environment has an immediate effect on ecology and food safety, Menkes syndrome and Wilson's disease cause accumulation and deficiency of copper ions in the body, respectively, and neurodegenerative diseases are also closely related to copper ion levels. However, the current copper ion detection technology has a high cost, complex operation, and other disadvantages. In this study, a ratiometric fluorescent probe (RB-DH) was rationally constructed to detect copper ions by coupling benzothiazole to rhodol derivatives. It can be used to determine copper ion concentrations in water samples, agricultural products, cells, and zebrafish. Importantly, due to the reversible response of RB-DH to copper ions, the fluctuation of intracellular copper ion content during the release of copper ion-related drugs (Copper gluconate and D-penicillamine) was successfully monitored with RB-DH for the first time. This study demonstrates RB-DH's potential application in the evaluation of related drug release effects and serves as a guide for the establishment of portable detection techniques for other important substances.


Assuntos
Cobre , Corantes Fluorescentes , Animais , Peixe-Zebra , Íons , Espectrometria de Fluorescência
7.
Bioorg Chem ; 135: 106498, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060848

RESUMO

Nowadays, the selective release of therapeutic drugs into tumor cells has become an important way of tumor treatment due to the high side effects of chemotherapy drugs. As one of the gas mediators, hydrogen sulfide (H2S) is closely related to cancer. Due to the high content of H2S in tumor cells, it can be used as a signaling molecule that triggers the release of drugs to achieve the selective release of therapeutic drugs. In addition, dual-channel fluorescence imaging technology can be better applied to monitor the drug delivery process and distinguish the state before and after drug release, so as to better track the effect of drug therapy. Based on this, we used NBD amines (NBD-NHR) as the recognition group of H2S and connected the tyrosine kinase inhibitor crizotinib to construct an activated dual-channel fluorescent probe CZ-NBD. After the probe enters the tumor cells, it consumes H2S and releases crizotinib, which is highly toxic to the tumor cells. Importantly, the probe displays significant fluorescence changes in different cells, enabling not only the screening of tumor cells, but also tracking and monitoring drug release and tumor cell activity. Therefore, the construction of probe CZ-NBD provides a new strategy for drug release monitoring in tumor cells.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Corantes Fluorescentes/farmacologia , Crizotinibe , Liberação Controlada de Fármacos , Transdução de Sinais , Células HeLa
8.
Acta Pharmacol Sin ; 44(1): 189-200, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35778489

RESUMO

The high incidence of lymphatic metastasis is closely related to poor prognosis and mortality in cancers. Potent inhibitors to prevent pathological lymphangiogenesis and lymphatic spread are urgently needed. The VEGF-C-VEGFR3 pathway plays a vital role in driving lymphangiogenesis and lymph node metastasis. In addition, COX2 in tumor cells and tumor-associated macrophages (TAMs) facilitates lymphangiogenesis. We recently reported that aiphanol, a natural stilbenolignan, attenuates tumor angiogenesis by repressing VEGFR2 and COX2. In this study, we evaluated the antilymphangiogenic and antimetastatic potency of aiphanol using in vitro, ex vivo and in vivo systems. We first demonstrated that aiphanol directly bound to VEGFR3 and blocked its kinase activity with an half-maximal inhibitory concentration (IC50) value of 0.29 µM in an in vitro ADP-GloTM kinase assay. Furthermore, we showed that aiphanol (7.5-30 µM) dose-dependently counteracted VEGF-C-induced proliferation, migration and tubular formation of lymphatic endothelial cells (LECs), which was further verified in vivo. VEGFR3 knockdown markedly mitigated the inhibitory potency of aiphanol on lymphangiogenesis. In 4T1-luc breast tumor-bearing mice, oral administration of aiphanol (5 and 30 mg· kg-1 ·d-1) dose-dependently decreased lymphatic metastasis and prolonged survival time, which was associated with impaired lymphangiogenesis, angiogenesis and, interestingly, macrophage infiltration. In addition, we found that aiphanol decreased the COX2-dependent secretion of PGE2 and VEGF-C from tumor cells and macrophages. These results demonstrate that aiphanol is an appealing agent for preventing lymphangiogenesis and lymphatic dissemination by synergistically targeting VEGFR3 and inhibiting the COX2-PGE2-VEGF-C signaling axis.


Assuntos
Linfangiogênese , Fator C de Crescimento do Endotélio Vascular , Animais , Camundongos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Endoteliais/metabolismo , Metástase Linfática , Fator C de Crescimento do Endotélio Vascular/metabolismo
9.
Anal Chem ; 94(34): 11783-11790, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35979623

RESUMO

Excessive oxidative stress is the main cause of neurotransmitter metabolism disorder in the brain with depression. Lysosomal hypobromic acid (HOBr) is an important reactive oxygen species produced in oxidative stress. Its abnormal content can lead to macromolecular damage and neurodegenerative diseases. However, due to the high reactivity and low concentration of HOBr and the lack of in situ imaging methods, the role of HOBr in depression is not clear. Herein, based on the HOBr-initiated aromatic substitution of a tertiary amine, we developed a novel two-photon (TP) fluorescence probe (NH-HOBr) for real-time visual monitoring of trace HOBr in living systems. NH-HOBr introduces N-(2-aminoethyl)-morpholine as a new recognition receptor for HOBr and a targeting group for lysosomes. It not only has excellent selectivity compared with other biomolecules (including hypochlorous acid), fast response (≤5 s) and high sensitivity (LOD = 15 nM) but also realizes sensitive detection of HOBr in cells, zebrafish, and mice tissues. It is worth noting that the in situ TP fluorescence imaging of mouse brain reveals the positive correlation between HOBr content and depression phenotype for the first time, providing strong direct evidence for the relationship between oxidative stress and depression. This work can provide reference to further study depression and the pathological mechanism of HOBr. In addition, HOBr-initiated aromatic substitution of a tertiary amine provides a new idea for the construction of specific and sensitive HOBr probes.


Assuntos
Depressão , Peixe-Zebra , Aminas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Bromatos , Depressão/diagnóstico por imagem , Corantes Fluorescentes/metabolismo , Ácido Hipocloroso , Lisossomos/metabolismo , Camundongos , Imagem Óptica , Fenótipo , Peixe-Zebra/metabolismo
10.
Anal Chem ; 94(19): 7140-7147, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35522825

RESUMO

Cancer, as a malignant tumor, seriously endangers human health. The study of cancer diagnosis and therapy has great practical significance. The development of theranostic agents has become a very important research topic. Nevertheless, some existing agents still have imperfections, such as complex structures and difficult syntheses. Therefore, it is urgent for researchers to develop simple novel theranostic agents. In this study, the precipitated fluorophore HAPQ was used as a simple drug molecule for the first time and combined with NBD-Cl to construct a simple and efficient theranostic probe (HAPQ-NBD). The theranostic probe can distinguish between tumor cells and normal cells based on the higher levels of biothiol in tumor cells. In addition, the probe can use biothiol as a control switch to release higher levels of precipitated fluorophore HAPQ in tumor cells, leading to selective high toxicity to tumor cells, thus achieving the goal of selectively killing tumor cells. The construction of probe HAPQ-NBD provides a practical tool for the diagnosis and therapy of cancer. It is expected that the development and utilization of precipitated fluorophore will provide a new method and strategy for cancer diagnosis and therapy.


Assuntos
Neoplasias , Medicina de Precisão , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos
11.
J Neuroinflammation ; 19(1): 298, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510261

RESUMO

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a pivotal role in inducing either inflammatory or tolerogenic response based on their subtypes and environmental signals. Emerging evidence indicates that DCs are critical for initiation and progression of autoimmune diseases, including multiple sclerosis (MS). Current disease-modifying therapies (DMT) for MS can significantly affect DCs' functions. However, the study on the impact of DMT on DCs is rare, unlike T and B lymphocytes that are the most commonly discussed targets of these therapies. Induction of tolerogenic DCs (tolDCs) with powerful therapeutic potential has been well-established to combat autoimmune responses in laboratory models and early clinical trials. In contrast to in vitro tolDC induction, in vivo elicitation by specifically targeting multiple cell-surface receptors has shown greater promise with more advantages. Here, we summarize the role of DCs in governing immune tolerance and in the process of initiating and perpetuating MS as well as the effects of current DMT drugs on DCs. We then highlight the most promising cell-surface receptors expressed on DCs currently being explored as the viable pharmacological targets through antigen delivery to generate tolDCs in vivo.


Assuntos
Doenças Autoimunes , Eritrodermia Ictiosiforme Congênita , Esclerose Múltipla , Humanos , Esclerose Múltipla/terapia , Células Dendríticas , Tolerância Imunológica
12.
PLoS Pathog ; 16(2): e1008355, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092131

RESUMO

Genetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially increased in the appressorium and invasive hyphae. A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M. oryzae. A total of 559 N-glycosites from 355 proteins were identified and quantified at different developmental stages. Functional classification to the N-glycosylated proteins revealed N-glycosylation can coordinate different cellular processes for mycelial growth, conidium formation, and appressorium formation. N-glycosylation can also modify key components in N-glycosylation, O-glycosylation and GPI anchor pathways, indicating intimate crosstalk between these pathways. Interestingly, we found nearly all key components of the endoplasmic reticulum quality control (ERQC) system were highly N-glycosylated in conidium and appressorium. Phenotypic analyses to the gene deletion mutants revealed four ERQC components, Gls1, Gls2, GTB1 and Cnx1, are important for mycelial growth, conidiation, and invasive hyphal growth in host cells. Subsequently, we identified the Gls1 N-glycosite N497 was important for invasive hyphal growth and partially required for conidiation, but didn't affect colony growth. Mutation of N497 resulted in reduction of Gls1 in protein level, and localization from ER into the vacuole, suggesting N497 is important for protein stability of Gls1. Our study showed a snapshot of the N-glycosylation landscape in plant pathogenic fungi, indicating functions of this modification in cellular processes, developments and pathogenesis.


Assuntos
Retículo Endoplasmático/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Estudos de Avaliação como Assunto , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Glicosilação , Hifas/genética , Mutação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteômica/métodos , Deleção de Sequência , Esporos Fúngicos/crescimento & desenvolvimento , Virulência/genética
13.
New Phytol ; 235(1): 247-262, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338654

RESUMO

In eukaryotes, N6 -methyladenosine (m6 A) is abundant on mRNA, and plays key roles in the regulation of RNA function. However, the roles and regulatory mechanisms of m6 A in phytopathogenic fungi are still largely unknown. Combined with biochemical analysis, MeRIP-seq and RNA-seq methods, as well as biological analysis, we showed that Magnaporthe oryzae MTA1 gene is an orthologue of human METTL4, which is involved in m6 A modification and plays a critical role in autophagy for fungal infection. The Δmta1 mutant showed reduced virulence due to blockage of appressorial penetration and invasive growth. Moreover, the autophagy process was severely disordered in the mutant. MeRIP-seq identified 659 hypomethylated m6 A peaks covering 595 mRNAs in Δmta1 appressoria, 114 m6 A peaks was negatively related to mRNA abundance, including several ATG gene transcripts. Typically, the mRNA abundance of MoATG8 was also increased in the single m6 A site mutant ∆atg8/MoATG8A982C , leading to an autophagy disorder. Our findings reveal the functional importance of the m6 A methylation in infection of M. oryzae and provide novel insight into the regulatory mechanisms of plant pathogenic fungi.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Autofagia/genética , Proteínas Fúngicas/genética , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , RNA , RNA Mensageiro/genética
14.
Inorg Chem ; 61(1): 586-596, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34955011

RESUMO

A three-dimensional (3D) mesoporous material with an atomically precise structure, Ti16Pb5O16(C6H5CO2)2(OCH3)40 (Ti16Pb5), comprised of a novel high-nuclearity Pb-doped titanium oxide cluster (TOC), was synthesized. Ti16Pb5 exhibited a surface area of 45 m2 g-1 and a pore diameter of 3.5 nm. It exhibited an uptake capacity of I2 of ≤2.2 g g-1 in vapor, and the performance was maintained after seven uptake-release cycles. Ti16Pb5 also showed a high adsorption ratio and capacity (93% and 3.1 g g-1) in hexane. The characterization data, including Fourier transform infrared, Raman, and powder X-ray diffraction, suggested the lattice structure of Ti16Pb5 was rigid and I2 was accommodated in the pores of Ti16Pb5. To the best of our knowledge, this is the first example of using a TOC in I2 adsorption. In addition, Ti16Pb5 showed excellent activity and recyclability in visible-light degradation of dye pollutants and photocurrent generation. Our structural analysis suggested the alkoxide ligands within the channels of Ti16Pb5 build up a confined polar environment and thereby facilitate I2 accommodation, and meanwhile, the improved performances and stabilities of Ti16Pb5 are correlated with its cluster-based, 3D hierarchical structure.

15.
Inorg Chem ; 61(37): 14887-14898, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36063420

RESUMO

The solvothermal reaction of titanium isopropoxide and chromate in the presence of benzoate produced two novel host-guest clusters encapsulating Cs+ or H3O+, (H3O)@Ti7Cr14 and Cs@Ti7Cr14. The most remarkable feature is that the Ti7O7 ring is concentrically embraced by a Cr14O14 ring to form a rigid Ti7Cr14 host. ESI-MS and 133Cs NMR revealed that the overall framework structures are preserved, whereas the benzoate ligands on the two clusters may be labile in solutions. Both (H3O)@Ti7Cr14 and Cs@Ti7Cr14 exhibit good UV-vis light-responsive properties and photocatalytic activities, with absorption edges extending up to 780 nm. Cs@Ti7Cr14 is an effective visible-light-responsive photocatalyst in both the heterogeneous methylene dye degradation and homogeneous CO2 cycloaddition reaction under mild conditions like room temperature and 1 bar of CO2. According to the mechanism studies, Cs+, as a rigid guest, can significantly improve the photogenerated charge separation efficiency of the Ti7Cr14 host, thereby improving its interface charge separation properties, photocurrent, and photocatalytic activities. Our findings not only provide new members of heterometallic titanium oxide clusters to enrich the metal oxide cluster family but also open up new possibilities for their photoresponses, which may play an important role in solar energy harvesting for sustainable chemistry.

16.
Bioorg Chem ; 122: 105741, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334255

RESUMO

When the cell environment changes or is stimulated, the Golgi apparatus will respond to the corresponding stress, through the opening of related pathways, the expression of corresponding substances can be promoted or inhibited to achieve the purpose of controlling cell redox homeostasis and reducing cytotoxicity. Intuitive analysis of the changes in the content of various substances in the process of stress has important guiding value for the further study of stress response, drug evaluation and clinical diagnosis. Therefore, for the Cys overexpressed during the oxidative stress of the Golgi apparatus, we developed a specific and sensitive fluorescent probe (Gol-NCS) to visually monitor the biologically important Cys in real time. The probe has low cytotoxicity and shows great potential in cell and zebrafish imaging, it can detect the changes of endogenous and exogenous cysteine. It is important to explore the synthetic pathway of Cys during Golgi stress by using the Golgi targeting performance of the probe Gol-NCS. It is confirmed by fluorescence imaging for the first time that the activity of CSE enzyme plays a decisive role in the formation of Cys. Therefore, probe Gol-NCS with excellent photochemical properties is expected to provide help for the research on the involvement of Cys in Golgi stress.


Assuntos
Cisteína , Corantes Fluorescentes , Animais , Cisteína/química , Corantes Fluorescentes/química , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Isotiocianatos , Peixe-Zebra/metabolismo
17.
Anal Chem ; 93(48): 16105-16112, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797641

RESUMO

Cancer is a serious threat to human health, and there is an urgent need to develop new treatment methods to overcome it. Organelle targeting therapy, as a highly effective and less toxic side effect treatment strategy, has great research significance and development prospects. Being an essential organelle, the Golgi apparatus plays a particularly major role in the growth of cancer cells. Acting as an indispensable and highly expressed antioxidant in cancer cells, glutathione (GSH) also contributes greatly during the Golgi oxidative stress. Therefore, it counts for much to track the changes of GSH concentration in Golgi for monitoring the occurrence and development of tumor cells, and exploring Golgi-targeted therapy is also extremely important for effective treatment of cancer. In this work, we designed and synthesized a simple Golgi-targeting fluorescent probe GT-GSH for accurately detecting GSH. The probe GT-GSH reacting with GSH decomposes toxic substances to Golgi, thereby killing cancer cells. At the same time, the ratiometric fluorescent probe can detect the concentration changes of GSH in Golgi stress with high sensitivity and selectivity in living cells. Therefore, such a GSH-responsive fluorescent probe with a Golgi-targeted therapy effect gives a new method for accurate treatment of cancer.


Assuntos
Corantes Fluorescentes , Neoplasias , Glutationa/metabolismo , Complexo de Golgi/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Estresse Oxidativo
18.
Plant Biotechnol J ; 19(12): 2629-2645, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34437761

RESUMO

Upon fungal and bacterial pathogen attack, plants launch pattern-triggered immunity (PTI) by recognizing pathogen-associated molecular patterns (PAMPs) to defend against pathogens. Although PTI-mediated response has been widely studied, a systematic understanding of the reprogrammed cellular processes during PTI by multi-omics analysis is lacking. In this study, we generated metabolome, transcriptome, proteome, ubiquitome and acetylome data to investigate rice (Oryza sativa) PTI responses to two PAMPs, the fungi-derived chitin and the bacteria-derived flg22. Integrative multi-omics analysis uncovered convergence and divergence of rice responses to these PAMPs at multiple regulatory layers. Rice responded to chitin and flg22 in a similar manner at the transcriptome and proteome levels, but distinct at the metabolome level. We found that this was probably due to post-translational regulation including ubiquitination and acetylation, which reshaped gene expression by modulating enzymatic activities, and possibly led to distinct metabolite profiles. We constructed regulatory atlas of metabolic pathways, including the defence-related phenylpropanoid and flavonoid biosynthesis and linoleic acid derivative metabolism. The multi-level regulatory network generated in this study sets the foundation for in-depth mechanistic dissection of PTI in rice and potentially in other related poaceous crop species.


Assuntos
Oryza , Quitina/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteoma/metabolismo
19.
New Phytol ; 230(4): 1329-1335, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33454977

RESUMO

Glycosylation is a conserved set of post-translational modifications that exists in all eukaryotic cells. During the last decade, the role of glycosylation in plant pathogenic fungi has received significant attention and considerable progress has been made especially in Ustilago maydis and Magnaporthe oryzae. Here, we review recent advances in our understanding of the role of N-glycosylation, O-glycosylation and glycosylphosphatidylinositol (GPI) anchors during plant infection by pathogenic fungi. We highlight the roles of these processes in regulatory mechanisms associated with appressorium formation, host penetration, biotrophic growth and immune evasion. We argue that improved knowledge of glycosylation pathways and the impact of these modifications on fungal pathogenesis is overdue and could provide novel strategies for disease control.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Basidiomycota , Proteínas Fúngicas/metabolismo , Glicosilação , Magnaporthe/metabolismo , Oryza/metabolismo , Doenças das Plantas , Virulência
20.
Chemistry ; 27(13): 4270-4282, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32964513

RESUMO

Titanium oxide clusters (TOCs) have been emerging as a new type of inorganic molecular entities of supramolecular chemistry. Herein, a perspective on the structures and functionalities of TOCs over the past three decades is given and the paramount roles of TOCs in serving supramolecular chemistry are demonstrated. Four types of supramolecular assemblies based on TOCs are reviewed, namely, TOC hosts for ion inclusion, mechanically interlocked molecular systems built from cyclic TOCs, reactivities of surface sites toward ligand exchange, and hierarchical structures of TOCs. The principles and advantages of TOCs toward each application are fully discussed, along with structural analyses. Following this path, more functional TOC-based supramolecular systems may be designed and synthesized in the future, which, in turn, will certainly enhance research into both supramolecular and coordination chemistry of titanium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA