Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(15): 3187-3204.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34157307

RESUMO

OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.


Assuntos
Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Endopeptidases/genética , Complexos Multiproteicos/metabolismo , Neovascularização Patológica/genética , Poliubiquitina/metabolismo , Adulto , Animais , Endopeptidases/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Fator 2 de Diferenciação de Crescimento/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Mutantes , Mutação , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Telangiectasia Hemorrágica Hereditária , Ubiquitina-Proteína Ligases/metabolismo
2.
Cell ; 153(5): 1012-24, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706739

RESUMO

Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.


Assuntos
Reparo do DNA , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espermatogênese , Testículo/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Quebras de DNA de Cadeia Dupla , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
3.
Nat Immunol ; 16(3): 237-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25642820

RESUMO

Mycobacterium tuberculosis PtpA, a secreted tyrosine phosphatase essential for tuberculosis pathogenicity, could be an ideal target for a drug against tuberculosis, but its active-site inhibitors lack selectivity over human phosphatases. Here we found that PtpA suppressed innate immunity dependent on pathways of the kinases Jnk and p38 and the transcription factor NF-κB by exploiting host ubiquitin. Binding of PtpA to ubiquitin via a region with no homology to human proteins activated it to dephosphorylate phosphorylated Jnk and p38, leading to suppression of innate immunity. Furthermore, the host adaptor TAB3 mediated NF-κB signaling by sensing ubiquitin chains, and PtpA blocked this process by competitively binding the ubiquitin-interacting domain of TAB3. Our findings reveal how pathogens subvert innate immunity by coopting host ubiquitin and suggest a potential tuberculosis treatment via targeting of ubiquitin-PtpA interfaces.


Assuntos
Imunidade Inata/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Ubiquitina/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Fosforilação , Transdução de Sinais/imunologia , Tuberculose/microbiologia , Células U937
4.
Semin Immunol ; 69: 101804, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406548

RESUMO

Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.


Assuntos
Inflamassomos , Piroptose , Animais , Humanos , Proteínas de Bactérias , Apoptose , Mediadores da Inflamação , Bactérias/metabolismo , Mamíferos/metabolismo
5.
Nucleic Acids Res ; 52(W1): W299-W305, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38769057

RESUMO

A key challenge in pathway design is finding proper enzymes that can be engineered to catalyze a non-natural reaction. Although existing tools can identify potential enzymes based on similar reactions, these tools encounter several issues. Firstly, the calculated similar reactions may not even have the same reaction type. Secondly, the associated enzymes are often numerous and identifying the most promising candidate enzymes is difficult due to the lack of data for evaluation. Thirdly, existing web tools do not provide interactive functions that enable users to fine-tune results based on their expertise. Here, we present REME (https://reme.biodesign.ac.cn/), the first integrated web platform for reaction enzyme mining and evaluation. Combining atom-to-atom mapping, atom type change identification, and reaction similarity calculation enables quick ranking and visualization of reactions similar to an objective non-natural reaction. Additional functionality enables users to filter similar reactions by their specified functional groups and candidate enzymes can be further filtered (e.g. by organisms) or expanded by Enzyme Commission number (EC) or sequence homology. Afterward, enzyme attributes (such as kcat, Km, optimal temperature and pH) can be assessed with deep learning-based methods, facilitating the swift identification of potential enzymes that can catalyze the non-natural reaction.


Assuntos
Enzimas , Software , Enzimas/química , Enzimas/metabolismo , Mineração de Dados/métodos , Internet , Aprendizado Profundo , Biocatálise
6.
BMC Genomics ; 25(1): 354, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594645

RESUMO

The homeodomain-leucine zipper (HD-Zip) gene family plays a pivotal role in plant development and stress responses. Nevertheless, a comprehensive characterization of the HD-Zip gene family in kiwifruit has been lacking. In this study, we have systematically identified 70 HD-Zip genes in the Actinidia chinensis (Ac) genome and 55 in the Actinidia eriantha (Ae) genome. These genes have been categorized into four subfamilies (HD-Zip I, II, III, and IV) through rigorous phylogenetic analysis. Analysis of synteny patterns and selection pressures has provided insights into how whole-genome duplication (WGD) or segmental may have contributed to the divergence in gene numbers between these two kiwifruit species, with duplicated gene pairs undergoing purifying selection. Furthermore, our study has unveiled tissue-specific expression patterns among kiwifruit HD-Zip genes, with some genes identified as key regulators of kiwifruit responses to bacterial canker disease and postharvest processes. These findings not only offer valuable insights into the evolutionary and functional characteristics of kiwifruit HD-Zips but also shed light on their potential roles in plant growth and development.


Assuntos
Actinidia , Proteínas de Homeodomínio , Proteínas de Homeodomínio/genética , Genoma de Planta , Filogenia , Actinidia/genética , Zíper de Leucina/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Perfilação da Expressão Gênica
7.
BMC Plant Biol ; 24(1): 69, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262947

RESUMO

BACKGROUND: The early allopolyploid Brassica napus was a hybrid of two Brassica species, that had undergone a whole genome duplication event followed by genome restructuring, including deletions and small scale duplications. A large number of homologous genes appeared functional divergence during species domestication. Due to the high conservation of de novo glycerolipid biosynthesis, multiple homologues of glycerol-3-phosphate acyltransferases (GPATs) have been found in B. napus. Moreover, the functional variances among these homologous GPAT-encoding genes are unclear. RESULTS: In this study, four B. napus homologous genes encoding glycerol-3-phosphate acyltransferase 9 (BnaGPAT9) were characterized. Although a bioinformatics analysis indicated high protein sequence similarity, the homologues demonstrated tissue-specific expression patterns and functional divergence. Yeast genetic complementation assays revealed that BnaGPAT9-A1/C1 homologues but not BnaGPAT9-A10/C9 homologues encoded functional GPAT enzymes. Furthermore, a single nucleotide polymorphism of BnaGPAT9-C1 that occurred during the domestication process was associated with enzyme activity and contributed to the fatty acid composition. The seed-specific expression of BnGPAT9-C11124A increased the erucic acid content in the transformant seeds. CONCLUSIONS: This study revealed that BnaGPAT9 gene homologues evolved into functionally divergent forms with important roles in erucic acid biosynthesis.


Assuntos
Brassica napus , Ácidos Erúcicos , Glicerol , Glicerol-3-Fosfato O-Aciltransferase , Saccharomyces cerevisiae , Sementes , Fosfatos
8.
Ann Hematol ; 103(7): 2381-2391, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38165416

RESUMO

Blastoid or pleomorphic mantle cell lymphoma (B/P-MCL) is characterized by high invasiveness and unfavorable outcomes, which is still a challenge for treating MCL. This retrospective study was performed to comprehensively analyze the clinical, genomic characteristics and treatment options of patients with B/PMCL from multicenter in China. Data were obtained from 693 patients with B/PMCL from three centers in China between April 1999 and December 2019. Seventy-four patients with BMCL (n = 43) or PMCL (n = 31) were included in the analysis. The median age of the cohort was 60.0 years with a male-to-female ratio of 2.89:1. The 3-year progression-free survival (PFS) and overall survival (OS) rates were 44.1% and 46.0%, respectively. Mutations of TP53, ATM, NOTCH1, NOTCH2, NSD2, SMARCA4, CREBBP, KMT2D, FAT1, and TRAF2 genes were the most common genetic changes in B/P-MCL. Progression of disease within 12 months (POD12) could independently predict the poor prognosis of patients with blastoid and pleomorphic variants. Patients with POD12 carried a distinct mutation profile (TP53, SMARCA4, NSD2, NOTCH2, KMT2D, PTPRD, CREBBP, and CDKN2A mutations) compared to patients with non-POD12. First-line high-dose cytosine arabinoside exposure obtained survival benefits in these populations, and BTKi combination therapy as the front-line treatment had somewhat improvement in survival with no significant difference in the statistic. In conclusion, B/P-MCL had inferior outcomes and a distinct genomic profile. Patients with POD12 displayed a distinct mutation profile and a poor prognosis. New therapeutic drugs and clinical trials for B/P-MCL need to be further explored.


Assuntos
Linfoma de Célula do Manto , Mutação , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/mortalidade , Linfoma de Célula do Manto/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Estudos Retrospectivos , Idoso , Adulto , Prognóstico , Taxa de Sobrevida , Idoso de 80 Anos ou mais
9.
Pharmacol Res ; 206: 107279, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942340

RESUMO

Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.

10.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522103

RESUMO

Titanium oxide (TiO2) coated polyimide has broad application prospects under extreme conditions. In order to obtain a high-quality ultra-thin TiO2coating on polyimide by atomic layer deposition (ALD), the polyimide was activated byin situoxygen plasma. It was found that a large number of polar oxygen functional groups, such as carboxyl, were generated on the surface of the activated polyimide, which can significantly promote the preparation of TiO2coating by ALD. The nucleation and growth of TiO2were studied by x-ray photoelectron spectroscopy monitoring and scanning electron microscopy observation. On the polyimide activated by oxygen plasma, the size of TiO2nuclei decreased and the quantity of TiO2nuclei increased, resulting in the growth of a highly uniform and dense TiO2coating. This coating exhibited excellent resistance to atomic oxygen. When exposed to 3.5 × 1021atom cm-2atomic oxygen flux, the erosion yield of the polyimide coated with 100 ALD cycles of TiO2was as low as 3.0 × 10-25cm3/atom, which is one order less than that of the standard POLYIMIDE-ref Kapton®film.

11.
Nanotechnology ; 35(31)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640911

RESUMO

The polar channels formed by the curing of waterborne anticorrosive coatings compromise their water resistance, leading to coating degradation and metal corrosion. To enhance the anticorrosive performance of waterborne coatings, this study proposed a novel method of depositing ultrathin Al2O3films on the surface of waterborne epoxy coatings by atomic layer deposition, a technique that can modify the surface properties of polymer materials by depositing functional films. The Al2O3-modified coatings exhibited improved sealing and barrier properties by closing the polar channels and surface defects and cracks. The surface structure and morphology of the modified coatings were characterized by x-ray photoelectron spectroscopy and scanning electron microscopy. The hydrophilicity and corrosion resistance of the modified coatings were evaluated by water contact angle measurement, Tafel polarization curve, and electrochemical impedance spectroscopy. The results indicated that the water contact angle of the Al2O3-modified coating increased by 48° compared to the unmodified coating, and the protection efficiency of the modified coating reached 99.81%. The Al2O3-modified coating demonstrated high anticorrosive efficiency and potential applications for metal anticorrosion in harsh marine environments.

12.
Phys Chem Chem Phys ; 26(7): 6196-6207, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305020

RESUMO

The plasmonic photothermal conversion efficiency can be enhanced by coupling among plasmonic atoms or plasmonic molecules due to the amplified local electric field and extinction cross-section. Recently, it has been theoretically proved that hybridization between dipolar modes and higher order modes can provide higher enhancement than that among dipolar modes in terms of both near- and far-field, which may lead to a higher photothermal conversion rate. In this work, we systematically investigated the photothermal conversion enhancement of plasmonic coupling between a dipolar mode of a titanium nitride nanoparticle (TiN NP) and a higher order mode of a gold nanorod (Au NR), which was compared to that of coupling among TiN NPs' dipolar modes. We evaluated the photothermal conversion efficiency of dipole-dipole coupling and dipole-multipole coupling in the nanocluster under the illumination of a monochromatic laser of 808 nm wavelength and simulated solar light, respectively. Both experimental tests and numerical simulations suggested that the plasmonic dipole-multipole coupling exhibited higher enhancement in photothermal conversion than dipole-dipole plasmonic coupling.

13.
Mol Ther ; 31(3): 847-865, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639869

RESUMO

The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated m6A methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury. On the contrary, ABRO1 overexpression significantly inhibited the neonatal cardiomyocyte proliferation and cardiac regeneration in mouse hearts. The mechanism by which ABRO1 regulates cardiomyocyte proliferation mainly involved METTL3-mediated Psph mRNA methylation and CDK2 phosphorylation. In the early postnatal period, METTL3-dependent m6A methylation promotes cardiomyocyte proliferation by hypermethylation of Psph mRNA and upregulating PSPH expression. PSPH dephosphorylates cyclin-dependent kinase 2 (CDK2), a positive regulator of cell cycle, at Thr14/Tyr15 and increases its activity. Upregulation of ABRO1 restricts METTL3 activity and halts the cardiomyocyte proliferation in the postnatal hearts. Thus, our study reveals that ABRO1 is an essential contributor in the cell cycle withdrawal and attenuation of proliferative response in the postnatal cardiomyocytes and could act as a potential target to accelerate cardiomyocyte proliferation and cardiac repair in the adult heart.


Assuntos
Miocárdio , Miócitos Cardíacos , Proteínas Associadas à Matriz Nuclear , Monoéster Fosfórico Hidrolases , Animais , Camundongos , Animais Recém-Nascidos , Proliferação de Células , Coração/fisiologia , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
14.
Neurol Sci ; 45(5): 2011-2019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146011

RESUMO

OBJECTIVE: To investigate the influence of hyperglycemia on motor symptoms, especially axial signs, and potential mechanisms related to insulin resistance (IR) in patients with Parkinson's disease (PWP). METHODS: According to glycated hemoglobin (HbA1c) level, PWP were divided into the low-HbA1c and the high-HbA1c groups. Demographic information, glucose metabolism-related variables, Hoehn-Yahr stage, and motor function were compared between the two groups. Correlations between levels of HbA1c and the homeostatic model assessment (HOMA)-IR and motor function in PWP were further analyzed. RESULTS: HbA1c level was significantly and positively correlated with the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III score, axial signs subscore, the Timed Get Up and Go test time, the center of pressure displacement of standing with eyes open and closed, and significantly and negatively correlated with the 10-m walk test comfortable gait speed. HOMA-IR level was significantly and negatively correlated with 10-m walk test comfortable gait speed, but not with others. CONCLUSIONS: PWP with high HbA1c showed worse axial symptoms, including dysfunction of automatic walking, dynamic balance, and postural control than those with low HbA1c. In PWP, the effects of hyperglycemia on automatic walking speed may be associated with the IR-related mechanisms, and the effects on dynamic balance and postural control may be related to mechanisms other than IR.


Assuntos
Hiperglicemia , Resistência à Insulina , Doença de Parkinson , Humanos , Hemoglobinas Glicadas , Doença de Parkinson/complicações , Caminhada , Hiperglicemia/complicações , Equilíbrio Postural/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-38290447

RESUMO

Objective: To investigate the preference of elderly patients for "Internet + Nursing Service", so as to provide reference for accurately matching their service needs. Methods: Based on discrete choice experiments, the elderly patients' "Internet + Nursing Service" choice preference questionnaire was prepared, and 410 elderly patients were interviewed face-to-face. The Conditional Logit Model was used for quantitative analysis of the experimental data. Results: The six attributes included in the study had a significant impact on the elderly patients' preference for "Internet + Nursing Service" (P < .05). Among non-economic attributes, "medical insurance reimbursement ratio -70%" has the highest utility (.263, P < .001), with "hospital size - larger (.205, P < .05)" and "medical insurance reimbursement ratio -50%" (.188, P < .05) ranking second and third, respectively. The relative importance of the attribute of medical insurance reimbursement proportion is the highest (26.44%), and the relative importance of service content is the lowest (9.78%). If the proportion of medical insurance reimbursement increases from 30% to 70%, patients are willing to pay 202.9 yuan, and the probability of choosing "Internet + Nursing Service" increases by 6.1%. Conclusion: Patients prefer to choose a higher proportion of medical insurance reimbursement, a larger medical institution, a higher level of nurses, low single service costs, a basic package, and "Internet + Nursing Service" led by the government and hospitals. Improvement of the price and medical insurance payment policy is recommended, along with the enhancement of the ability of primary nursing services, strengthening of the management of Internet enterprise platforms, and scientific assessment of the needs of patients for personalized nursing services.

16.
Int J Phytoremediation ; 26(4): 472-480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37599450

RESUMO

In order to study the effects of oxalic acids on plant growth and Pb accumulation in different parts of the plants of intercropping Arabis alpina and Zea mays, pot experiment was conducted to investigate the changes of oxalic acid contents of the plants and Pb accumulation through exogenous oxalic acid addition (0, 5, 25 and 50 mmol kg-1). The results showed the root biomass of intercropped A. alpina and total biomass of Z. mays increased by 3.22 folds and 2.97 folds with 5 mmol kg-1 oxalic acid treatment. The oxalic acid contents of shoots and root secretions decreased by 86.5% and 44.3%, respectively. The BCF (bio-accumulation factor) and TF (translocation factor) of intercropping A. alpina reduced under 25 - 50 mmol kg-1 oxalic acid treatments. There were relationships between exogenous oxalic acid treatment concentrations and oxalic acid contents of A. alpina shoots, Z. mays root secretions. The Pb contents of shoots of A. alpina and Z. mays were related to exogenous oxalic acid additions and oxalic acid contents of shoots. In general, 5 mmol kg-1 oxalic acid treatment, that can improve plant growth of intercropped A. alpina and Z. mays, which Pb translocation and accumulation of A. alpina were promoted, whereas Pb accumulation of A. alpina was inhibited with 25 - 50 mmol kg-1 concentrations addition. This study will provide a basis for promoting the application of phytoremediation techniques and efficient crop production in heavy metal contaminated areas.


Hyperaccumulators intercropped with crops will remediate heavy metal soils or mitigate the damage caused by heavy metals to plants through oxalic acid secretion by the root system. However, the effect of oxalic acid changes on plant growth and Pb accumulation is lacking. Our study investigated the changes in oxalic acid content at different concentrations and sites affected the ability of intercropped plants to grow and accumulate Pb. This work shown that under intercropping conditions, exogenous oxalic acid promotes intercropped plant growth as well as soil pH reduction, Pb content in shoots both Arabis alpina and Zea mays is influenced by exogenous oxalic acid content, while lower Z. mays roots Pb content is determined by a combination of exogenous addition and aboveground oxalic acid content. Low concentrations of oxalic acid promoted Pb enrichment in roots of A. alpina, while reducing the uptake of Pb content in Z. mays. This article gives us a better understanding for the response of intercropping plants to the use of organic acids under heavy metal stress and how to modify their environment so as to favor growth.


Assuntos
Arabis , Poluentes do Solo , Zea mays , Chumbo , Ácido Oxálico , Biodegradação Ambiental , Poluentes do Solo/análise , Plantas
17.
Angew Chem Int Ed Engl ; 63(19): e202401940, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408301

RESUMO

The artificial microenvironments inside coordination cages have gained significant attention for performing enzyme-like catalytic reactions by facilitating the formation of labile and complex molecules through a "ship-in-a-bottle" approach. Despite many fascinating examples, this approach remains scarcely explored in the context of synthesizing metallic clusters such as polyoxometalates (POMs). The development of innovative approaches to control and influence the speciation of POMs in aqueous solutions would greatly advance their applicability and could ultimately lead to the formation of elusive clusters that cannot be synthesized by using traditional methods. In this study, we employ host-guest stabilization within a coordination cage to enable a novel cavity-directed synthesis of labile POMs in aqueous solutions under mild conditions. The elusive Lindqvist [M6O19]2- (M=Mo or W) POMs were successfully synthesized at room temperature via the condensation of molybdate or tungstate building blocks within the confined cavity of a robust and water-soluble Pt6L4(NO3)12 coordination cage. Importantly, the encapsulation of these POMs enhances their stability in water, rendering them efficient catalysts for environmentally friendly and selective sulfoxidation reactions using H2O2 as a green oxidant in a pure aqueous medium. The approach developed in this paper offers a means to synthesize and stabilize the otherwise unstable metal-oxo clusters in water, which can broaden the scope of their applications.

18.
EMBO Rep ; 22(6): e52175, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33938130

RESUMO

Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic-type serine-threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG-host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin-activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TGF-ß-activated kinase 1 (TAK1), thereby inhibiting the activation of NF-κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin-conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82-Ub), rather than the usual C86-Ub thiol-ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.


Assuntos
Mycobacterium tuberculosis , Proteínas Quinases Dependentes de GMP Cíclico , Mycobacterium tuberculosis/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
19.
Nanotechnology ; 34(30)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171102

RESUMO

This work demonstrates a facile and efficient methodology to synthesize a composite material of zeolitic imidazolate frameworks (ZIFs) and laser-induced graphene (LIG). This ZIF-67 loaded LIG composite (ZIF-67/LIG) has been adequately characterized for its morphology and structure, and its electrochemical performance has been specifically examined. As supercapacitors (SCs) electrode material, the ZIF-67/LIG composite exhibits superb electrochemical performance, owing to the inherent high porosity, abundant active sites, large specific surface area of ZIF-67, and the excellent conductive three-dimensional hierarchical porous network structure provided by LIG. In three-electrode system, ZIF-67/LIG composite electrode displays outstanding areal specific capacitance (CA) of 135.6 mF cm-2at a current density of 1 mA cm-2with 1 M Na2SO4aqueous electrolyte, which is far greater than that of pristine LIG (7.7 mF cm-2). Furthermore, the ZIF-67/LIG composite has been fabricated into an all-solid-state planar micro-supercapacitor (MSC). This ZIF-67/LIG MSC exhibits an impressiveCAof 38.1 mF cm-2at a current density of 0.20 mA cm-2, a good cycling stability of 80.3% capacitance retention after 3000 cycles, and a high energy density of 5.29µWh cm-2at a power density of 0.1 mW cm-2. All electrochemical results clearly manifest that as-prepared ZIF-67/LIG composite can be a candidate in energy storage field with exciting possibilities.

20.
J Fluoresc ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060150

RESUMO

For the efficient detection of Hg2+ and ClO-, a double-analyte-responsive fluorescent probe PTB was successfully synthesized by combining N-butyl-3-formyl phenothiazine with hydrazine benzothiazole, and designing a specific reaction site for recognizing two analytes (Hg2+ and ClO-) in a compound. It was shown that probe PTB successfully formed a stable complex with Hg2+ in the coordination ratio of 2:1 by using the strong sulfur affinity of Hg2+, which resulted in a remarkable "turn-off" effect, with a quenching efficiency of 92.5% and four reversible cycles of Hg2+ fluorescence detection. For the fluorescence detection of Hg2+, the response time is fast (≤ 2 min) and the detection limit is low (7.8 nM), showing extremely high sensitivity, and the performance is obviously better than that of the reported fluorescent probes for detecting Hg2+. In particular, probe PTB has low toxicity and good biocompatibility, and has been successfully used for imaging of Hg2+ in living cells. Moreover, probe PTB uses thioether bond and carbon-nitrogen double bond as reaction sites to detect ClO-, which has large Stokes Shift (149 nm), good selectivity, high quenching efficiency (96.5%) and fast time response (about 10 s), and successfully detects ClO- in actual water samples. The dual functional fluorescent probe PTB is sensitive for Hg2+ and ClO-. It has been successfully used for making pH fluorescent test paper and imaging detection of exogenous Hg2+ in VSMC cells with low toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA