Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 578(7793): 129-136, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025019

RESUMO

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , RNA/genética , Variações do Número de Cópias de DNA , DNA de Neoplasias , Genoma Humano , Genômica , Humanos , Transcriptoma
3.
Appl Opt ; 61(12): 3480-3485, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35471445

RESUMO

X-ray backlighting is been widely used today in dynamic phenomena observation. By applying proper synchronizing techniques, the in-situ data of the intensity distribution of the fragments in laser-driven shock-loaded aluminum were obtained for a particular moment using x-ray backlighting imaging. The image resolution was better than 40 µm in this context by introducing a pinhole. In order to obtain the areal mass of the fragments, a set of reference Al step wedges with certain thicknesses was employed. Furthermore, a novel, to the best of our knowledge, calibration method is introduced to calibrate the x-ray intensity distribution. It was effective to decrease the non-uniformity influence of the x-ray intensity with this calibration method by simulating a light field. After calibration, the standard deviation of 30 regions of interest reduced to 4.17%. In consequence, the areal mass distribution of the fragments is well quantified. It should be noted that the uncertainty in the areal mass conversion mainly comes from the non-uniformity of the x-ray intensity distribution with about 5% and the measurement uncertainty of the step thicknesses with less than 10%.

4.
J Hepatol ; 72(5): 896-908, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31887370

RESUMO

BACKGROUND & AIMS: The presence of multifocal tumors, developed either from intrahepatic metastasis (IM) or multicentric occurrence (MO), is a distinct feature of hepatocellular carcinoma (HCC). Immunogenomic characterization of multifocal HCC is important for understanding immune escape in different lesions and developing immunotherapy. METHODS: We combined whole-exome/transcriptome sequencing, multiplex immunostaining, immunopeptidomes, T cell receptor (TCR) sequencing and bioinformatic analyses of 47 tumors from 15 patients with HCC and multifocal lesions. RESULTS: IM and MO demonstrated distinct clonal architecture, mutational spectrum and genetic susceptibility. The immune microenvironment also displayed spatiotemporal heterogeneity, such as less T cell and more M2 macrophage infiltration in IM and higher expression of inhibitory immune checkpoints in MO. Similar to mutational profiles, shared neoantigens and TCR repertoires among tumors from the same patients were abundant in IM but scarce in MO. Combining neoantigen prediction and immunopeptidomes identified T cell-specific neoepitopes and achieved a high verification rate in vitro. Immunoediting mainly occurred in MO but not IM, due to the relatively low immune infiltration. Loss of heterozygosity of human leukocyte antigen (HLA) alleles, identified in 17% of multifocal HCC, hampered the ability of major histocompatibility complex to present neoantigens, especially in IM. An integrated analysis of Immunoscore, immunoediting, TCR clonality and HLA loss of heterozygosity in each tumor could stratify patients into 2 groups based on whether they have a high or low risk of recurrence (p = 0.038). CONCLUSION: Our study comprehensively characterized the genetic structure, neoepitope landscape, T cell profile and immunoediting status that collectively shape tumor evolution and could be used to optimize personalized immunotherapies for multifocal HCC. LAY SUMMARY: Immunogenomic features of multifocal hepatocellular carcinoma (HCC) are important for understanding immune-escape mechanisms and developing more effective immunotherapy. Herein, comprehensive immunogenomic characterization showed that diverse genomic structures within multifocal HCC would leave footprints on the immune landscape. Only a few tumors were under the control of immunosurveillance, while others evaded the immune system through multiple mechanisms that led to poor prognosis. Our study revealed heterogeneous immunogenomic landscapes and immune-constrained tumor evolution, the understanding of which could be used to optimize personalized immunotherapies for multifocal HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/imunologia , Evasão Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/imunologia , Feminino , Predisposição Genética para Doença , Antígenos HLA/genética , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T/genética , Transcriptoma , Sequenciamento do Exoma
5.
Blood ; 131(24): 2670-2681, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29545328

RESUMO

Hepatitis B virus (HBV) infection is endemic in some parts of Asia, Africa, and South America and remains to be a significant public health problem in these areas. It is known as a leading risk factor for the development of hepatocellular carcinoma, but epidemiological studies have also shown that the infection may increase the incidence of several types of B-cell lymphoma. Here, by characterizing altogether 275 Chinese diffuse large B-cell lymphoma (DLBCL) patients, we showed that patients with concomitant HBV infection (surface antigen positive [HBsAg+]) are characterized by a younger age, a more advanced disease stage at diagnosis, and reduced overall survival. Furthermore, by whole-genome/exome sequencing of 96 tumors and the respective peripheral blood samples and targeted sequencing of 179 tumors from these patients, we observed an enhanced rate of mutagenesis and a distinct set of mutation targets in HBsAg+ DLBCL genomes, which could be partially explained by the activities of APOBEC and activation-induced cytidine deaminase. By transcriptome analysis, we further showed that the HBV-associated gene expression signature is contributed by the enrichment of genes regulated by BCL6, FOXO1, and ZFP36L1. Finally, by analysis of immunoglobulin heavy chain gene sequences, we showed that an antigen-independent mechanism, rather than a chronic antigenic simulation model, is favored in HBV-related lymphomagenesis. Taken together, we present the first comprehensive genomic and transcriptomic study that suggests a link between HBV infection and B-cell malignancy. The genetic alterations identified in this study may also provide opportunities for development of novel therapeutic strategies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Vírus da Hepatite B/fisiologia , Hepatite B/complicações , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/virologia , Mutação , Transcriptoma , Adulto , Fatores Etários , China/epidemiologia , Feminino , Hepatite B/epidemiologia , Hepatite B/genética , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/análise , Humanos , Linfoma Difuso de Grandes Células B/epidemiologia , Masculino , Pessoa de Meia-Idade , Proteína Tumoral p73/genética
6.
BMC Genomics ; 17(1): 766, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27687780

RESUMO

BACKGROUND: A-to-I RNA-editing mediated by ADAR (adenosine deaminase acting on RNA) enzymes that converts adenosine to inosine in RNA sequence can generate mutations and alter gene regulation in metazoans. Previous studies have shown that A-to-I RNA-editing plays vital roles in mouse embryogenesis. However, the RNA-editing activities in early human embryonic development have not been investigated. RESULTS: Here, we characterized genome-wide A-to-I RNA-editing activities during human early embryogenesis by profiling 68 single cells from 29 human embryos spanning from oocyte to morula stages. We demonstrate dynamic changes in genome-wide RNA-editing during early human embryogenesis in a stage-specific fashion. In parallel with ADAR expression level changes, the genome-wide A-to-I RNA-editing levels in cells remained relatively stable until 4-cell stage, but dramatically decreased at 8-cell stage, continually decreased at morula stage. We detected 37 non-synonymously RNA-edited genes, of which 5 were frequently found in cells of multiple embryonic stages. Moreover, we found that A-to-I editings in miRNA-targeted regions of a substantial number of genes preferably occurred in one or two sequential stages. CONCLUSIONS: Our single-cell analysis reveals dynamic changes in genome-wide RNA-editing during early human embryogenesis in a stage-specific fashion, and provides important insights into early human embryogenesis.

7.
BMC Genomics ; 17: 442, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27277198

RESUMO

BACKGROUND: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. RESULTS: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing concentrations of docetaxel. Whole exome sequencing performed at five successive stages during this process was used to identify single point mutational events, insertions/deletions and copy number alterations associated with the acquisition of docetaxel resistance. Acquired coding variation undergoing positive selection and harboring characteristics likely to be functional were further prioritized using network-based approaches. A number of genomic changes were found to be undergoing evolutionary selection, some of which were likely to be functional. Of the five stages of progression toward resistance, most resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired several copy number gains on chromosome 7, including ABC transporter genes, including ABCB1 and ABCB4, as well as DMTF1, CLDN12, CROT, and SRI. For MDA-MB-231 numerous copy number losses on chromosome X involving more than 30 genes was observed. Of these genes, CASK, POLA1, PRDX4, MED14 and PIGA were highly prioritized by the applied network-based gene ranking approach. At higher docetaxel concentration MCF-7 subclones exhibited a copy number loss in E2F4, and the gene encoding this important transcription factor was down-regulated in MCF-7 resistant cells. CONCLUSIONS: Our study of the evolution of acquired docetaxel resistance identified several genomic changes that might explain development of docetaxel resistance. Interestingly, the most relevant resistance-associated changes appeared to originate midway through the evolution towards fully resistant cell lines. Our data suggest that no single genomic event sufficiently predicts resistance to docetaxel, but require genomic alterations affecting multiple pathways that in concert establish the final resistance stage.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Evolução Molecular , Exoma , Taxoides/farmacologia , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Docetaxel , Feminino , Perfilação da Expressão Gênica , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fluxo de Trabalho
8.
Am J Kidney Dis ; 64(1): 119-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24583054

RESUMO

Monozygotic twins have been widely studied to distinguish genetic and environmental factors in the pathogenesis of human diseases. For renal agenesis, the one-sided absence of renal tissue, the relative contributions of genetic and environmental factors to its pathogenesis are still unclear. In this study of a pair of monozygotic twins discordant for congenital renal agenesis, the genomic profile was analyzed from a set of blood samples using high-throughput exome-capture sequencing to detect single-nucleotide polymorphisms (SNPs), copy number variations (CNVs), and insertions and deletions (indels). Also, an epigenomic analysis used reduced-representation bisulfite sequencing to detect differentially methylated regions (DMRs). No discordant SNPs, CNVs, or indels were confirmed, but 514 DMRs were detected. KEGG analysis indicated the DMRs localized to 10 signaling pathways and 25 genes, including the mitogen-activated protein kinase pathway and 6 genes (FGF18, FGF12, PDGFRA, MAPK11, AMH, CTBP1) involved in organ development. Although methylation results from our adult patient and her sister may not represent the pattern that was present during kidney development, we could at least confirm a lack of obvious differences at the genome level, which suggests that nongenetic factors may be involved in the pathogenesis of renal agenesis.


Assuntos
Anormalidades Congênitas/genética , Epigenômica/métodos , Genômica/métodos , Nefropatias/congênito , Rim/anormalidades , Gêmeos Monozigóticos/genética , Adulto , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Deleção de Genes , Humanos , Nefropatias/genética , Mutagênese Insercional/genética , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética
9.
Leukemia ; 38(3): 610-620, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158444

RESUMO

Despite the improvements in clinical outcomes for DLBCL, a significant proportion of patients still face challenges with refractory/relapsed (R/R) disease after receiving first-line R-CHOP treatment. To further elucidate the underlying mechanism of R/R disease and to develop methods for identifying patients at risk of early disease progression, we integrated clinical, genetic and transcriptomic data derived from 2805 R-CHOP-treated patients from seven independent cohorts. Among these, 887 patients exhibited R/R disease within two years (poor outcome), and 1918 patients remained in remission at two years (good outcome). Our analysis identified four preferentially mutated genes (TP53, MYD88, SPEN, MYC) in the untreated (diagnostic) tumor samples from patients with poor outcomes. Furthermore, transcriptomic analysis revealed a distinct gene expression pattern linked to poor outcomes, affecting pathways involved in cell adhesion/migration, T-cell activation/regulation, PI3K, and NF-κB signaling. Moreover, we developed and validated a 24-gene expression score as an independent prognostic predictor for treatment outcomes. This score also demonstrated efficacy in further stratifying high-risk patients when integrated with existing genetic or cell-of-origin subtypes, including the unclassified cases in these models. Finally, based on these findings, we developed an online analysis tool ( https://lymphprog.serve.scilifelab.se/app/lymphprog ) that can be used for prognostic prediction for DLBCL patients.


Assuntos
Doxorrubicina , Linfoma Difuso de Grandes Células B , Humanos , Rituximab/uso terapêutico , Ciclofosfamida/uso terapêutico , Vincristina/uso terapêutico , Doxorrubicina/uso terapêutico , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Prognóstico , Perfilação da Expressão Gênica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Prednisona/uso terapêutico
10.
Cancer Cell ; 42(1): 135-156.e17, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38101410

RESUMO

Comprehensive molecular analyses of metastatic hepatocellular carcinoma (HCC) are lacking. Here, we generate multi-omic profiling of 257 primary and 176 metastatic regions from 182 HCC patients. Primary tumors rich in hypoxia signatures facilitated polyclonal dissemination. Genomic divergence between primary and metastatic HCC is high, and early dissemination is prevalent. The remarkable neoantigen intratumor heterogeneity observed in metastases is associated with decreased T cell reactivity, resulting from disruptions to neoantigen presentation. We identify somatic copy number alterations as highly selected events driving metastasis. Subclones without Wnt mutations show a stronger selective advantage for metastasis than those with Wnt mutations and are characterized by a microenvironment rich in activated fibroblasts favoring a pro-metastatic phenotype. Finally, metastases without Wnt mutations exhibit higher enrichment of immunosuppressive B cells that mediate terminal exhaustion of CD8+ T cells via HLA-E:CD94-NKG2A checkpoint axis. Collectively, our results provide a multi-dimensional dissection of the complex evolutionary process of metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linfócitos T CD8-Positivos/patologia , Multiômica , Mutação , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA