Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33657410

RESUMO

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Assuntos
COVID-19/imunologia , Megacariócitos/imunologia , Monócitos/imunologia , RNA Viral , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , China , Estudos de Coortes , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , RNA Viral/isolamento & purificação , Análise de Célula Única , Transcriptoma/imunologia , Adulto Jovem
3.
Plant Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819320

RESUMO

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.

4.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042483

RESUMO

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Assuntos
Fucose , Inflamação , Lipopolissacarídeos , Animais , Humanos , Camundongos , Receptor gp130 de Citocina , Fucose/farmacologia , Fucose/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , RNA Mensageiro
5.
J Biol Chem ; 299(8): 105051, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451482

RESUMO

Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3ß1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin ß1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.


Assuntos
Quinase 1 de Adesão Focal , Polissacarídeos , Transdução de Sinais , Humanos , Quinase 1 de Adesão Focal/metabolismo , Células HeLa , Proteínas de Membrana/metabolismo , Fosforilação , Polissacarídeos/metabolismo
6.
J Am Chem Soc ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865282

RESUMO

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

7.
Cancer Sci ; 115(4): 1196-1208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288901

RESUMO

Fms-like tyrosine kinase-3 (FLT3) is a commonly mutated gene in acute myeloid leukemia (AML). The two most common mutations are the internal-tandem duplication domain (ITD) mutation and the tyrosine kinase domain (TKD) mutation. FLT3-ITD and FLT3-TKD exhibit distinct protein stability, cellular localization, and intracellular signaling. To understand the underlying mechanisms, we performed proximity labeling with TurboID to identify proteins that regulate FLT3-ITD or -TKD differently. We found that BRCA1/BRCA2-containing complex subunit 36 (BRCC36), a specific K63-linked polyubiquitin deubiquitinase, was exclusively associated with ITD, not the wild type of FLT3 and TKD. Knockdown of BRCC36 resulted in decreased signal transducers and activators of transcription 5 phosphorylation and cell proliferation in ITD cells. Consistently, treatment with thiolutin, an inhibitor of BRCC36, specifically suppressed cell proliferation and induced cell apoptosis in ITD cells. Thiolutin efficiently affected leukemia cell lines expressing FLT3-ITD cell viability and exhibited mutual synergies with quizartinib, a standard clinical medicine for AML. Furthermore, mutation of the lysine at 609 of ITD led to significant suppression of K63 polyubiquitination and decreased its stability, suggesting that K609 is a critical site for K63 ubiquitination specifically recognized by BRCC36. These data indicate that BRCC36 is a specific regulator for FLT3-ITD, which may shed light on developing a novel therapeutic approach for AML.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Transdução de Sinais/fisiologia , Mutação , Estabilidade Proteica
8.
Br J Haematol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960449

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable efficacy in treating advanced B-cell malignancies by targeting CD19, but antigen-negative relapses and immune responses triggered by murine-derived antibodies remain significant challenges, necessitating the development of novel humanized multitarget CAR-T therapies. Here, we engineered a second-generation 4-1BB-CD3ζ-based CAR construct incorporating humanized CD19 single-chain variable fragments (scFvs) and BAFFR single-variable domains on heavy chains (VHHs), also known as nanobodies. The resultant CAR-T cells, with different constructs, were functionally compared both in vitro and in vivo. We found that the optimal tandem and bicistronic (BI) structures retained respective antigen-binding abilities, and both demonstrated specific activation when stimulated with target cells. At the same time, BI CAR-T cells (BI CARs) exhibited stronger tumour-killing ability and better secretion of interleukin-2 and tumour necrosis factor-alpha than single-target CAR-T cells. Additionally, BI CARs showed less exhaustion phenotype upon repeated antigen stimulation and demonstrated more potent and persistent antitumor effects in mouse xenograft models. Overall, we developed a novel humanized CD19/BAFFR bicistronic CAR (BI CAR) based on a combination of scFv and VHH, which showed potent and sustained antitumor ability both in vitro and in vivo, including against tumours with CD19 or BAFFR deficiencies.

9.
Oncologist ; 29(4): e487-e497, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37874924

RESUMO

BACKGROUND: The difference in the prognoses between treatment with surgical therapy and continuation of local-plus-systemic therapy following successful down-staging of intermediate-advanced hepatocellular carcinoma (HCC) remains unclear. METHODS: Data of 405 patients with intermediate-advanced HCC treated at 30 hospitals across China from January 2017 to July 2022 were retrospectively reviewed. All patients received local-plus-systemic therapy and were divided into the surgical (n = 100) and nonsurgical groups (n = 305) according to whether they received surgical therapy. The differences between long-term prognoses of the 2 groups were compared. Subgroup analysis was performed in 173 HCC patients who met the criteria for surgical resection following down-staging. RESULTS: Multivariable analysis of all patients showed that surgical therapy, hazard ratio (HR): 0.289, 95% confidence interval, CI, 0.136-0.613) was a protective factor for overall survival (OS), but not for event-free survival (EFS). Multivariable analysis of 173 intermediate-advanced HCC patients who met the criteria for surgical resection after conversion therapy showed that surgical therapy (HR: 0.282, 95% CI, 0.121-0.655) was a protective factor for OS, but not for EFS. Similar results were obtained after propensity score matching. For patients with Barcelona Clinic Liver Cancer stage B (HR: 0.171, 95% CI, 0.039-0.751) and C (HR: 0.269, 95% CI, 0.085-0.854), surgical therapy was also a protective factor for OS. CONCLUSIONS: Overall, for patients with intermediate-advanced HCC who underwent local-plus-systemic therapies, surgical therapy is a protective factor for long-term prognosis and can prolong OS, and for those who met the surgical resection criteria after conversion therapy, surgical therapy is recommended.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Estadiamento de Neoplasias , Prognóstico , Hepatectomia
10.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38608490

RESUMO

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Glicosilação , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular , Células HL-60 , Linhagem Celular Tumoral
11.
Small ; 20(7): e2305777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797188

RESUMO

Stimulus-responsive mode is highly desirable for improving the precise monitoring and physiological efficacy of endogenous biomarkers (EB). However, its integrated application for visual detection and therapy is limited by inappropriate use of responsive triggers and poor delivery of EB signal-transducing agents, which remain challenging in simultaneous monitoring and noninvasive therapy of EB and EB-mediated pathological events. Target microRNA (miRNA) as controllable reaction triggers and DNAzyme as signal-transducing agent are proposed to develop target-stimulated multifunctional nanocabinets (MFNCs) for the visual tracking of both miRNA and miRNA-mediated anticancer events. The MFNCs, equipped with a target-discriminating sequence-incorporated DNAzyme motif, can specifically release therapeutic molecules through target-triggered conformational switches, accompanied by transduction signal output. Target detection and molecule release performance are recorded in parallel via reverse dual-signal feedback at the single-molecule level. In addition, the intrinsic thermal-replenishing of the MFNCs leads to tumor ablation without invasive exogenous aids. The system achieves visual target quantification, anticancer molecule real-time tracking, and tumor suppression in vivo and in vitro. This work proposes a new paradigm for precise visual exploration of EB or EB-mediated bio-events and provides a demonstration of efficacious all-in-one detection and therapy based on the target-triggered multifunctional nanosystem.


Assuntos
DNA Catalítico , MicroRNAs , Neoplasias , Humanos , Retroalimentação , MicroRNAs/genética , Neoplasias/tratamento farmacológico
12.
New Phytol ; 241(4): 1510-1524, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130037

RESUMO

Brassinosteroids (BRs) are plant hormones that are essential in plant growth and development. BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1 ASSOCIATED RECEPTOR KINASE 1 (BAK1), which are located on the plasma membrane, function as co-receptors that accept and transmit BR signals. PROHIBITIN 3 (PHB3) was identified in both BRI1 and BAK1 complexes by affinity purification and LC-MS/MS analysis. Biochemical data showed that BRI1/BAK1 interacted with PHB3 in vitro and in vivo. BRI1/BAK1 phosphorylated PHB3 in vitro. When the Thr-80 amino acid in PHB3 was mutated to Ala, the mutant protein was not phosphorylated by BRI1 and the mutant protein interaction with BRI1 was abolished in the yeast two-hybrid assay. BAK1 did not phosphorylate the mutant protein PHB3T54A . The loss-of-function phb3 mutant showed a weaker BR signal than the wild-type. Genetic analyses revealed that PHB3 is a BRI1/BAK1 downstream substrate that participates in BR signalling. PHB3 has five homozygous in tomato, and we named the closest to AtPHB3 as SlPHB3.1. Biochemical data showed that SlBRI1/SlSERK3A/SlSERK3B interacted with SlPHB3.1 and SlPHB3.3. The CRISPR-Cas9 method generated slphb3.1 mutant led to a BR signal stunted relatively in tomatoes. PHB3 is a new component of the BR signal pathway in both Arabidopsis and tomato.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Brassinosteroides/metabolismo , Solanum lycopersicum/genética , Proteínas Quinases/metabolismo , Fosforilação , Proteínas de Arabidopsis/metabolismo , Cromatografia Líquida , Proibitinas , Espectrometria de Massas em Tandem , Transdução de Sinais/fisiologia , Proteínas Mutantes
13.
Chemistry ; : e202400651, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705845

RESUMO

PEMWE is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic OER and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. The 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr-1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

14.
Langmuir ; 40(3): 1604-1612, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183283

RESUMO

A CO2/N2-responsive emulsion provides milder reaction conditions, nontoxicity, and economic feasibility compared to other switchable surfactants. In this study, CO2/N2-responsive pickering emulsions were fabricated by using a compounded dispersion containing SiO2 nanoparticles (NPs) and superamphiphiles as the emulsifying agents. The synergistic effects of the SiO2 NPs and superamphiphiles significantly stabilized the emulsion at all of the tested concentrations and prevented complete phase separation of oil and water. The electrostatic interaction between the SiO2 NPs and superamphiphiles was disrupted after bubbling with CO2 for 30 s, resulting in the breaking of the emulsion. However, the dispersion recovered its interfacial activity after the introduction of N2 and again emulsified the emulsion. This reversible switching behavior was validated through three consecutive cycles of bubbling CO2/N2. The protonation and deprotonation of the SiO2 NPs and superamphiphiles in response to CO2/N2 facilitated reversible assembly and disassembly, which enabled the switching of the emulsions between inactive and active forms. The novel highly stable Pickering emulsions demonstrated rapid demulsification and emulsification in response to CO2/N2 and are promising for a wide range of applications.

15.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 192-198, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836662

RESUMO

Intervertebral disc degeneration (IDD) is characterized by the decreased function and number of nucleus pulposus cells (NPCs) caused by excessive intervertebral disc (IVD) pressure. This research aims to provide novel insights into IDD prevention and treatment by clarifying the effect of andrographolide (ANDR) on IDD cell autophagy and oxidative stress under mechanical stress. Human primary NPCs were extracted from the nucleus pulposus tissue of non-IDD trauma patients. An IDD cell model was established by posing mechanical traction on NPCs. Through the construction of an IDD rat model, the influence of ANDR on IDD pathological changes was explored in vivo. The proliferation and autophagy of NPCs were decreased while the apoptosis rate and oxidative stress reaction were increased by mechanical traction. ANDR intervention obviously alleviated this situation. MiR-9 showed upregulated expression in IDD cell model, while FoxO3 and PINK1/Parkin were downregulated. Decreased proliferation and autophagy as well as enhanced apoptosis and oxidative stress response of NPCs were observed following miR-9 mimics and H89 intervention, while the opposite trend was observed after FoxO3 overexpression. FoxO3 is a direct target downstream miR-9. The in vivo experiments revealed that after ANDR intervention, the number of apoptotic cells in rat IVD tissue decreased and the autophagy increased. In conclusion, ANDR improves NPC proliferation, and autophagy, inhibits apoptosis and oxidative stress, and alleviates the pathological changes of IDD via the miR-9/FoxO3/PINK1/Parkin axis, which may be a new and effective treatment for IDD in the future.


Assuntos
Autofagia , Diterpenos , Proteína Forkhead Box O3 , Degeneração do Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Estresse Oxidativo , Proteínas Quinases , Ratos Sprague-Dawley , Estresse Mecânico , Ubiquitina-Proteína Ligases , MicroRNAs/metabolismo , MicroRNAs/genética , Autofagia/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Humanos , Diterpenos/farmacologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ratos , Masculino , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Feminino , Adulto , Modelos Animais de Doenças
16.
Med Sci Monit ; 30: e945471, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864115

RESUMO

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Rongfeng Zhang, Jianwei Liu, Shengpeng Yu, Dong Sun, Xiaohua Wang, Jingshu Fu, Jie Shen, Zhao Xie. Osteoprotegerin (OPG) Promotes Recruitment of Endothelial Progenitor Cells (EPCs) via CXCR4 Signaling Pathway to Improve Bone Defect Repair. Med Sci Monit, 2019; 25: 5572-5579. DOI: 10.12659/MSM.916838.


Assuntos
Células Progenitoras Endoteliais , Osteoprotegerina , Receptores CXCR4 , Transdução de Sinais , Células Progenitoras Endoteliais/metabolismo , Receptores CXCR4/metabolismo , Osteoprotegerina/metabolismo , Animais , Regeneração Óssea/efeitos dos fármacos , Humanos , Osso e Ossos/metabolismo , Osteogênese/efeitos dos fármacos , Masculino , Camundongos , Cicatrização/efeitos dos fármacos
17.
BMC Womens Health ; 24(1): 188, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515066

RESUMO

BACKGROUND: Aberrant DNA methylation is a vital molecular alteration commonly detected in type I endometrial cancers (EC), and tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine (5hmC) play significant roles in DNA demethylation. However, little is known about the function and correlation of TET2 and 5hmC co-expressed in EC. This study intended to investigate the clinical significance of TET2 and 5hmC in EC. METHODS: The levels of TET2 and 5hmC were detected in 326 endometrial tissues by immumohistochemistry, and the correlation of their level was detected by Pearson analysis. The association between the levels of TET2 and 5hmC and clinicopathologic characteristics was analyzed. Prognostic value of TET2 and 5hmC was explored by Kaplan-Meier analysis. The Cox proportional hazard regression model was used for univariate and multivariate analyses. RESULTS: Based on the analysis results, TET2 protein level was positively correlated with 5hmC level in EC tissues (r = 0.801, P < 0.001). TET2+5hmC+ (high TET2 and high 5hmC) association was significantly associated with well differentiation, myometrial invasion, negative lymph node metastasis, and tumor stage in EC. Association of TET2 and 5hmC was confirmed as a prognostic factor (HR = 2.843, 95%CI = 1.226-3.605, P = 0.007) for EC patients, and EC patients with TET2-5hmC- level had poor overall survival. CONCLUSIONS: In summary, the association of TET2 and 5hmC was downregulated in EC tissues, and may be a potential poor prognostic indicator for EC patients. Combined detection of TET2 and 5hmC may be valuable for the diagnosis and prognosis of EC.


Assuntos
5-Metilcitosina , Carcinoma Endometrioide , Dioxigenases , Neoplasias do Endométrio , Feminino , Humanos , 5-Metilcitosina/análogos & derivados , Carcinoma Endometrioide/genética , Relevância Clínica , Dioxigenases/genética , Dioxigenases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA
18.
Artigo em Inglês | MEDLINE | ID: mdl-38915288

RESUMO

FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase expressed in hematopoietic cells. Internal-tandem duplication domain (ITD) mutation and tyrosine kinase domain (TKD) mutation are the two most common mutations in acute myeloid leukemia (AML). Post-translational modifications (PTMs) of FLT3, such as glycosylation and ubiquitination, have been shown to impact various aspects of the protein in both wild-type (WT) and mutant forms of FLT3. In this review, we describe how the glycosylation status of FLT3 affects its subcellular localization, which significantly impacts the activation of downstream signaling, and the impact of specific ubiquitination on FLT3 function and stability, which may be associated with disease progression. Moreover, potential novel therapeutic strategies involving a combination of FLT3 tyrosine kinase inhibitors and drugs targeting glycosylation or ubiquitination are discussed.

19.
Nano Lett ; 23(16): 7389-7396, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37498627

RESUMO

Structural color always shows a reversible switch between reflection and transmission states when viewed from different angles, attracting increasing attention in display applications. However, this switching between reflection and transmission states of structural color suffers from the inherent lack of autonomous regulation, which is unmanageable in the case of different application scenarios. Here, we design an intelligent two-way structural color film which can reversibly change its color when applied with an extra stimulation such as voltage, heat signal, or light. A special structural feature contains a traditional photonic crystal film of polystyrene (PS) microspheres assembled by smart windows. Remarkably, our structural color film shows a prominent polarization sensitivity, and the angle dependence of the structural color broadens the gamut of display color demonstrated by both finite element theoretical analysis and experimental observation. Prospectively, this hierarchically designed film provides a promising pathway toward next-generation multicolor displays and smart windows.

20.
Environ Geochem Health ; 46(2): 59, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280129

RESUMO

Heavy metal(loid) (HM) contamination in agricultural soils, particularly in areas severely impacted by smelting industries, has attracted worldwide attention. In this study, agricultural soils were collected in a flourishing multimetal smelting area near the Yellow River in central China. By an integrated approach encompassing the positive matrix factorization model, ordinary kriging interpolation and hierarchical clustering analysis (PMF-OK-HC), a total of four major sources and their mass contributions were identified, namely, soil parent material (56.6%), industrial waste and Mo smelting (24.0%), metal smelting and traffic emissions (12.8%), and coal combustion (6.7%). On this basis, the health risk of HMs was evaluated by Monte Carlo simulations and showed that a higher risk, with a higher proportion of exceeding-thresholds risk, was observed for children than for adults in terms of both noncarcinogenic and carcinogenic risks. Exposure pathways of oral ingestion in children could result in a higher attributed risk than other pathways. Furthermore, source-oriented risk assessment (SORA) revealed that the sources of coal combustion, industrial waste and Mo smelting had the highest contributions to noncarcinogenic and carcinogenic risks. Overall, for effective environmental management in agricultural soil, the framework of SORA was verified as an effective tool in the identification of the priority control of HMs and their sources.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Resíduos Industriais , Rios , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , China , Medição de Risco , Carvão Mineral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA