RESUMO
Flexible perovskite solar cells (F-PSCs) have emerged as promising alternatives to conventional silicon solar cells for applications in portable and wearable electronics. However, the mechanical stability of inherently brittle perovskite, due to residual lattice stress and ductile fracture formation, poses significant challenges to the long-term photovoltaic performance and device lifetime. In this paper, to address this issue, a dynamic "ligament" composed of supramolecular poly(dimethylsiloxane) polyurethane (DSSP-PPU) is introduced into the grain boundaries of the PSCs, facilitating the release of residual stress and softening of the grain boundaries. Remarkably, this dynamic "ligament" exhibits excellent self-healing properties and enables the healing of cracks in perovskite films at room temperature. The obtained PSCs have achieved power conversion efficiencies of 23.73% and 22.24% for rigid substrates and flexible substrates, respectively, also 17.32% for flexible mini-modules. Notably, the F-PSCs retain nearly 80% of their initial efficiency even after subjecting the F-PSCs to 8000 bending cycles (r = 2 mm), which can further recover to almost 90% of the initial efficiency through the self-healing process. This remarkable improvement in device stability and longevity holds great promise for extending the overall lifetime of F-PSCs.
RESUMO
FAPbI3 perovskites have garnered considerable interest owing to their outstanding thermal stability, along with near-theoretical bandgap and efficiency. However, their inherent phase instability presents a substantial challenge to the long-term stability of devices. Herein, this issue through a dual-strategy of self-assembly 3D/0D quasi-core-shell structure is tackled as an internal encapsulation layer, and in situ introduction of excess PbI2 for surface and grain boundary defects passivating, therefore preventing moisture intrusion into FAPbI3 perovskite films. By utilizing this method alone, not only enhances the stability of the FAPbI3 film but also effectively passivates defects and minimizes non-radiative recombination, ultimately yielding a champion device efficiency of 23.23%. Furthermore, the devices own better moisture resistance, exhibiting a T80 lifetime exceeding 3500 h at 40% relative humidity (RH). Meanwhile, a 19.51% PCE of mini-module (5 × 5 cm2) is demonstrated. This research offers valuable insights and directions for the advancement of stable and highly efficient FAPbI3 perovskite solar cells.
RESUMO
Sliding ferroelectricity is a unique type of polarity recently observed in van der Waals bilayers with a suitable stacking. However, electric-field control of sliding ferroelectricity is hard and could induce large coercive electric fields and serious leakage currents that corrode the ferroelectricity and electronic properties, which are essential for modern two-dimensional electronics and optoelectronics. Here, we proposed laser-pulse deterministic control of sliding polarization in bilayer hexagonal boron nitride by first principles and molecular dynamics simulation with machine-learned force fields. The laser pulses excite shear modes that exhibit certain directional movements of lateral sliding between bilayers. The vibration of excited modes under laser pulses is predicted to overcome the energy barrier and achieve the switching of sliding polarization. Furthermore, it is found that three possible sliding transitions-between AB (BA) and BA (AB) stacking-can lead to the occurrence of dynamical magnetic fields along three different directions. Remarkably, the magnetic fields are generated by the simple linear motion of nonmagnetic species, without any need for more exotic (circular, spiral) pathways. Such predictions of deterministic control of sliding polarization and multistates of dynamical magnetic field thus expand the potential applications of sliding ferroelectricity in memory and electronic devices.
RESUMO
Due to the easy oxidation of Sn2+, which leads to form tin vacancy defects and poor perovskite film quality, caused by the rapid crystallization rate in tin-based perovskite solar cells (PSCs), their efficiency lags far behind that of lead-based PSCs. To improve the photovoltaic (PV) performance and stability of FA0.9PEA0.1SnI3-based PSCs (T-PSCs), a small amount of Pb(SCN)2 is introduced into a perovskite precursor as an antioxidant, and acetaminophen (ACE) with various functional groups is used to modify a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/perovskite interface. The results show that the Pb(SCN)2 additive and ACE interfacial modification can not only optimize energy level alignment in T-PSCs but also inhibit Sn2+ oxidation to reduce the trap-state density, resulting in promoted carrier transport. The synergetic effect of the Pb(SCN)2 antioxidant and ACE interfacial modification significantly reduces nonradiative recombination and improves the PV performance and stability of T-PSCs. Consequently, the unsealed T-PSCs with the Pb(SCN)2 additive and ACE modification achieve a champion efficiency of 12.04% and maintain 99% of their initial PCE after being stored in N2 for more than 2100 h, while reference T-PSCs demonstrate a champion PCE of 6.20% and retain only 72% of its initial PCE. Moreover, the modified T-PSCs without encapsulation demonstrate much better stability in humid air.
RESUMO
Ferrovalley materials hold great promise for implementation of logic and memory devices in valleytronics. However, there have so far been limited ferrovalley materials exhibiting significant valley polarization and high Curie temperature (TC). Using first-principles calculations, we predict that the TiTeBr monolayer is a promising ferrovalley candidate. It exhibits intrinsic ferromagnetism with TC as high as 220 K. It is indicated that an out-of-plane alignment of magnetization demonstrates a valley polarization up to 113 meV in the topmost valence band, as further verified by perturbation theory considering both the spin polarization and spin-orbit coupling. Under an in-plane electric field, the valley-dependent Berry curvature results in the anomalous valley Hall effect (AVHE). Moreover, under a suitable in-plane biaxial strain, the TiTeBr monolayer transforms into a Chern insulator with a nonzero Chern number, yet retains its ferrovalley characters and thus the emergent quantum anomalous valley Hall effect (QAVHE). Our study indicates that the TiTeBr monolayer is a promising ferrovalley material, and it provides a platform for investigating the valley-dependent Hall effect.
RESUMO
BACKGROUND: Generation and regulation (control) of linear and angular momentum is a challenge during turning while walking which may be exacerbated by age-related changes. In healthy older adults, little is known about how momentum is controlled during turns, especially within each phase of gait. Each phase of gait affords unique mechanical contexts to control momenta and regulate balance. In healthy young adults, we found that the transverse-plane linear and angular momenta generation strategies observed within specific phases of gait during straight-line gait were also used during turns. Therefore, in this study, we investigated whether healthy older adults shared similar momentum control strategies specific to each gait phase during straight-line gait and turns. METHODS: Nine healthy older adults completed straight-line gait and 90° leftward walking turns. We compared the change in transverse-plane whole-body linear and angular momentum across gait phases (left and right single and double support). We also compared the average leftward force and transverse-plane moment across gait phases. RESULTS: We found that leftward linear momentum was generated most during right single support in straight-line gait and leftward turns. However, in contrast to straight-line gait, during leftward turns, average leftward force was applied across gait phases, with left single support generating significantly less leftward average force than other gait phases. Leftward angular momentum generation and average moment were greatest during left double support in both tasks. We observed some within-participant results that diverged from the group statistical findings, illustrating that although they are common, these momenta control strategies are not necessary. CONCLUSIONS: Older adults generated transverse-plane linear and angular momentum during consistent phases of gait during straight-line gait and 90° turns, potentially indicating a shared control strategy. Understanding momentum control within each phase of gait can help design more specific targets in gait and balance training interventions.
Assuntos
Marcha , Caminhada , Humanos , Marcha/fisiologia , Idoso , Feminino , Masculino , Fenômenos Biomecânicos , Caminhada/fisiologia , Equilíbrio Postural/fisiologia , Envelhecimento/fisiologia , Idoso de 80 Anos ou maisRESUMO
The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs.
RESUMO
The linear magnetoelectric effect is an attractive phenomenon in condensed matters and provides indispensable technological functionalities. Here a colossal linear magnetoelectric effect with diagonal component α_{33} reaching up to â¼480 ps/m is reported in a polar magnet Fe_{2}Mo_{3}O_{8}. This effect can persist in a broad range of magnetic field (â¼20 T) and is orders of magnitude larger than reported values in literature. Such an exceptional experimental observation can be well reproduced by a theoretical model affirmatively unveiling the vital contributions from the exchange striction, while the sign difference of magnetocrystalline anisotropy can also be reasonably figured out.
RESUMO
Searching for novel magnetoelectric (ME) materials has been one of the major issues of multiferroics. In this work, we present a systematic research study on garnet Mn3Al2Ge3O12, including structural, magnetic, heat capacity, and ME characterizations. Below the Néel temperature TN â¼ 6.8 K, Mn2+ spins form a long-range antiferromagnetic order, and a magnetic field H-driven electric polarization P is identified simultaneously. The relationship between P and H is nonlinear under low H and becomes linear under high H. Such transition is believed to originate from the H-induced variation of the magnetic structure. In addition, the P reaches 0.6 µC/m2 under µ0H = 9 T, corresponding to an ME coupling coefficient of αME â¼ 0.08 ps/m under high H. The small αME is attributed to the weak spin-orbit coupling and weak magnetic interactions in Mn3Al2Ge3O12. Furthermore, we realize the stable control of P by periodically varying H, which is crucial for potential application. We provide a rare case that a garnet material shows a first-order ME effect.
RESUMO
Magnetic susceptibility, specific heat, dielectric, and electric polarization of LiCuFe2(VO4)3 have been investigated. Two sequential antiferromagnetic transitions at TN1 â¼ 9.95 K and TN2 â¼ 8.17 K are observed under zero magnetic field. Although a dielectric peak at TN1 is clearly identified, the measured pyroelectric current also exhibits a sharp peak at TN1, implying the magnetically relevant ferroelectricity. Interestingly, another pyroelectric peak around TN2 with an opposite signal is observed, resulting in the disappearance of electric polarization below TN2. Besides, the electric polarization is significantly suppressed in response to external magnetic field, evidencing a remarkable magnetoelectric effect. These results suggest the essential relevance of the magnetic structure with the ferroelectricity in LiCuFe2(VO4)3, deserving further investigation of the underlying mechanism.
RESUMO
Cesium lead halide perovskites as ideal photovoltaic and optoelectronics materials have attracted more and more attention. Here, we investigated the structure and electronic properties of halide perovskite CsPbX3 (X = I, Br, Cl) by particle swarm optimization and first principles methods at hydrostatic pressure. For CsPbI3, the structure phases and corresponding phase transitions of non-perovskite orthorhombic Pnma (non-Pv-Pnma), monoclinic C2/m (C2/m-I), and another different monoclinic phase C2/m (C2/m-II) are found in the pressure range 0-120 GPa. The largest piezochromic effect in the perovskites can be predicted in CsPbI3 under a pressure below 10 GPa. The band gap is reduced under pressure and the C2/m-II phase becomes a metal under pressures larger than 65 GPa. For CsPbBr3 and CsPbCl3, the same phase sequence under pressure, i.e. from perovskite Pnma (Pv-Pnma), to non-Pv-Pnma, C2/m-I, and then to another orthorhombic Cmcm phase, is found. The newly discovered non-Pv-Pnma phase gives an excellent explanation of previous measurements at low pressure for CsPbBr3 and CsPbCl3. Furthermore, the calculations of electronic properties show that pressure is an effective means to tune the band gap. Our calculations and results extend the applications in photovoltaics and optoelectronics of halide perovskites.
RESUMO
The magnetic properties of the spin-5/2 double molybdate LiFe(MoO4)2 have been characterized by heat capacity, magnetic susceptibility, and neutron powder diffraction techniques. Unlike the multiferroic system LiFe(WO4)2 which exhibits two successive magnetic transitions, LiFe(MoO4)2 undergoes only one antiferromagnetic transition at TN â¼ 23.8 K. Its antiferromagnetic magnetic structure with the commensurate propagation vector k = (0, 0.5, 0) has been determined. Density functional theory calculations confirm the antiferromagnetic ground state and provide a numerical estimate of the relevant exchange coupling constants.
RESUMO
The combination of ferroelectricity with narrow-gap high-mobility semiconductors may not only entail both functions of nonvolatile memory and efficient manipulation of signals, but may also facilitate efficient ferroelectric photovoltaics and thermoelectrics. However, these applications are hindered by the wide gap and poor mobility of current ferroelectrics. A recent study (J. Am. Chem. Soc., 2018, 140, 3736) reported a facile, general, low-temperature, and size tunable solution phase synthesis of NaBiS2 and NaBiSe2 that are made of relatively abundant or biocompatible elements, which enables their large-scale practical applications. Herein we show first-principles evidence of their ferroelectricity with a large polarization (â¼33 µC cm-2), a moderate bandgap (â¼1.6 eV) and a high electron-mobility (â¼104 cm2 V-1 s-1). Although they have a relatively small switching barrier, their ferroelectricity can be robust under ambient conditions with enhanced polarization upon either application of a small tensile strain or ion doping, where distortion can be increased and multiferroics may also be obtained, despite reduced mobility. Considering previous reports on photovoltaics and thermoelectrics of similar compounds, sodium bismuth dichalcogenides might be tuned for higher performance with the coexistence of these desirable properties.
RESUMO
Using first-principles calculations, we investigate the structural, electronic, and magnetic properties of perovskite LaMO3/YMO3 superlattices (M = Cr, Mn, Co and Ni). It is found that ferroelectricity can emerge in LaMO3/YMO3 superlattices (M = Cr, Mn, Co), allowing them to be promising multiferroic candidates, while no ferroelectricity is found in the LaNiO3/YNiO3 superlattice. The electronic structure calculations indicate that the LaCrO3/YCrO3, LaMnO3/YMnO3, and LaCoO3/YCoO3 superlattices are insulators, and their magnetic ground states exhibit G-type antiferromagnetic (AFM), A-type AFM, and G-type AFM order, respectively, while the LaNiO3/YNiO3 superlattice is however a half-metallic ferromagnet. The electronic structure and magnetic ground state are discussed, based on the projected density of states data and Heisenberg model, respectively, and the magnetic phase transition temperature is evaluated based on mean-field theory. In the meantime, the spontaneous ferroelectric polarization of the LaMO3/YMO3 superlattices (M = Cr, Mn, Co) is determined respectively using the Born effective charge model and Berry phase method, and their hybrid improper ferroelectric character is predicted, with the net polarization mainly from the different displacements of the LaO layers and YO layers along the b-axis. It is suggested that alternative multiferroic materials can be obtained by properly designing superlattices that consist of two non-polar magnetic materials but exhibit tunable magnetic ground states and transition temperature and hybrid improper ferroelectricity.
RESUMO
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO_{4} as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature ac susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion holds also for its sister compound YbMgGaO_{4}, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.
RESUMO
Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm-2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.
RESUMO
A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO3 films. Moreover, we are able to study the switching behavior of the first time obtained periodic 109° stripe domains with a thick bottom electrode. Besides, the precise controlling of pure 71° and 109° periodic stripe domain walls enable us to make a clear demonstration that the exchange bias in the ferromagnet/BiFeO3 system originates from 109° domain walls. Our findings provide future directions to study the room temperature electric field control of exchange bias and open a new pathway to explore the room temperature multiferroic vortices in the BiFeO3 system.
RESUMO
We report the first demonstration of a high-efficiency photoelectrochemical (PEC) water splitting reaction using a novel Si NWs/WO3 core/shell photoanode prepared by a mild and inexpensive metal-catalyzed electroless etching process followed by dip-coating, airing and annealing methods. The dense and vertically aligned Si NWs/WO3 core/shell nanostructure were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. In comparison to planar n-Si, Si NWs and planar Si/WO3, the Si NWs/WO3 samples showed significantly enhanced photocurrent over the entire potential sweep range. More significantly, the Si NWs/WO3 samples have an exceptionally low photocurrent onset potential of -0.6393 V versus reversible hydrogen electrode (RHE), indicating very efficient charge separation and charge transportation processes. The as-prepared electrode also has a photocurrent density of 2.7 mA cm-2 at 0.6107 V versus RHE in 0.5 M Na2SO4 solution under simulated solar light irradiation (100 mW cm-2 from 300 W Xenon lamp coupled with an AM 1.5 G filter). An optimal solar-to-hydrogen efficiency of about 1.9% was achieved at 0.2676 V versus RHE. Electrochemical impedance spectroscopy was conducted to investigate the properties of the charge transfer process, and the results indicated that the enhanced PEC performance may due to the increased charge separation. The x-ray photoelectron spectroscopy measurements indicated the chemical composition of the Si NWs/WO3 nanostructure. Our work has provided an efficient strategy to improve the energy conversion efficiency and photocurrent of water splitting materials.
RESUMO
We report the low-temperature characterizations on structural, specific heat, magnetic, and ferroelectric behaviors of transition metal oxide compound Sr3NiTa2O9. It is suggested that Sr3NiTa2O9 is a spin-1 triangular lattice Heisenberg quantum antiferromagnet which may have weak easy-axis anisotropy. At zero magnetic field, a two-step transition sequence at T(N1) = 3.35 K and T(N2) = 2.74 K, respectively, is observed, corresponding to the up-up-down (uud) spin ordering and 120° spin ordering, respectively. The two transition points shift gradually with increasing magnetic field toward the low temperature, accompanying an evolution from the 120° spin structure (phase) to the normal oblique phases. Ferroelectricity in the 120° phase is clearly identified. The first-principles calculations confirm the 120° phase as the ground state whose ferroelectricity originates mainly from the electronic polarization.
RESUMO
Efficient and cost-competitive fabrication of high-quality ferroelectric and multiferroic nanostructures is of general interest. In this work, a top-down nano-patterning technique is developed by the Ar+ ion beam etching in combination with the sacrificed ultrathin anodic alumina (AAO) mask. This technique is demonstrated by preparation of the epitaxial BiFeO3 (BFO) nanostructures of various geometries, including nanodot and anti-nanodot arrays. The lateral dot size is as small as â¼60 nm and an ultrahigh dot density of â¼60 Gbit/inch2 is achieved. It is revealed that the etching process involves sequential shape evolution of both the AAO mask and the underlying BFO film, resulting in the nanodots and anti-nanodots arrays of various geometries. The as-etched BFO nanodots array exhibits well-established ferroelectric domain structures and reversible polarization switching, as examined by piezoresponse force microscopy (PFM). It is suggested that this technique is extendable to fabrication of a wide range of functional oxide nanostructures for potential nanoelectronic applications.