Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chem Biodivers ; 20(6): e202300410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088929

RESUMO

Two new naphthyridine compounds, 4-methoxycarbonyl-5-oxo-1,6-naphthyridine (1) and 5-methoxycarbonyl-4-oxo-1,6-naphthyridine (2) were obtained from the MeOH extracts of sponge Aaptos suberitoides. Their structures were determined by spectroscopic methods, including HR-ESI-MS, 1D-NMR (1 H-NMR, 13 C-NMR), 2D-NMR (COSY, HSQC, HMBC). The structure of compound 1 was further confirmed via single crystal X-ray diffraction analysis. Compound 1 was found to reduce NO production in LPS-induced RAW 264.7 macrophages with IC50 value of 0.15 mM. In addition, it decreased the mRNA expression levels of pro-inflammatory mediators, such as the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) in LPS-induced macrophages. It also decreased the protein expression of iNOS and COX-2 in LPS-induced macrophages. Mechanistic studies further revealed that compound 1 inhibited the mitogen-activated protein kinase (MAPK), and activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathways in LPS-induced RAW 264.7 macrophages.


Assuntos
Lipopolissacarídeos , Proteínas Quinases Ativadas por Mitógeno , Animais , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Transdução de Sinais , Macrófagos , Naftiridinas/farmacologia , Naftiridinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Heme Oxigenase-1/metabolismo , Óxido Nítrico/metabolismo
2.
Clin Exp Allergy ; 52(1): 137-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145667

RESUMO

BACKGROUND: Two to four percentage of infants are affected by cow's milk allergy (CMA), which persists in 20% of cases. Intervention approaches using early oral exposure to cow's milk protein or hydrolysed cow's milk formula are being studied for CMA prevention. Yet, concerns regarding safety and/or efficacy remain to be tackled in particular for high-risk non-exclusively breastfed infants. Therefore, safe and effective strategies to improve early life oral tolerance induction may be considered. OBJECTIVE: We aim to investigate the efficacy of CMA prevention using oral pre-exposure of two selected 18-AA ß-lactoglobulin-derived peptides loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in a whey-protein induced CMA murine model. METHODS: The peptides were loaded in PLGA NPs via a double emulsion solvent evaporation technique. In vivo, 3-week-old female C3H/HeOuJ mice received 6 daily gavages with PBS, whey, Peptide-mix, a high- or low-dose Peptide-NPs or empty-NP plus Peptide-mix, prior to 5 weekly oral sensitizations with cholera toxin plus whey or PBS (sham). One week after the last sensitization, the challenge induced acute allergic skin response, anaphylactic shock score, allergen-specific serum immunoglobulins and ex vivo whey-stimulated cytokine release by splenocytes was measured. RESULTS: Mice pre-treated with high-dose Peptide-NPs but not low-dose or empty-NP plus Peptide-mix, were protected from anaphylaxis and showed a significantly lower acute allergic skin response upon intradermal whey challenge compared to whey-sensitized mice. Compared with the Peptide-mix or empty-NP plus Peptide-mix pre-treatment, the high-dose Peptide-NPs-pre-treatment inhibited ex vivo whey-stimulated pro-inflammatory cytokine TNF-α release by splenocytes. CONCLUSION & CLINICAL RELEVANCE: Oral pre-exposure of mice to two ß-lactoglobulin-derived peptides loaded PLGA NPs induced a dose-related partial prevention of CMA symptoms upon challenge to whole whey protein and silenced whey-specific systemic immune response. These findings encourage further development of the concept of peptide-loaded PLGA NPs for CMA prevention towards clinical application.


Assuntos
Hipersensibilidade a Leite , Nanopartículas , Animais , Bovinos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lactoglobulinas , Camundongos , Camundongos Endogâmicos C3H , Proteínas do Leite , Soro do Leite/metabolismo , Proteínas do Soro do Leite
3.
Pharm Biol ; 60(1): 1502-1510, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35968601

RESUMO

CONTEXT: Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are promising therapeutic targets for AD. OBJECTIVE: To evaluate the inhibitory effects of aaptamine on two cholinesterases and investigate the in vivo therapeutic effect on AD in a zebrafish model. MATERIALS AND METHODS: Aaptamine was isolated from the sponge Aaptos suberitoides Brøndsted (Suberitidae). Enzyme inhibition, kinetic analysis, surface plasmon resonance (SPR) and molecular docking assays were used to determine its inhibitory effect on AChE and BuChE in vitro. Zebrafish were divided into six groups: control, model, 8 µM donepezil, 5 , 10 and 20 µM aaptamine. After three days of drug treatment, the behaviour assay was performed. RESULTS: The IC50 values of aaptamine towards AChE and BuChE were 16.0 and 4.6 µM. And aaptamine directly inhibited the two cholinesterases in the mixed inhibition type, with Ki values of 6.96 ± 0.04 and 6.35 ± 0.02 µM, with Kd values of 87.6 and 10.7 µM. Besides, aaptamine interacts with the crucial anionic sites of AChE and BuChE. In vivo studies indicated that the dyskinesia recovery rates of 5 , 10 and 20 µM aaptamine group were 34.8, 58.8 and 60.0%, respectively, and that of donepezil was 63.7%. DISCUSSION AND CONCLUSIONS: Aaptamine showed great potential to exert its anti-AD effects by directly inhibiting the activities of AChE and BuChE. Therefore, this study identified a novel medicinal application of aaptamine and provided a new structural scaffold for the development of anti-AD drugs.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Donepezila/farmacologia , Humanos , Cinética , Simulação de Acoplamento Molecular , Naftiridinas , Peixe-Zebra/metabolismo
4.
Nat Prod Res ; 37(10): 1601-1607, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35876050

RESUMO

A large number of extracts of medicinal plants or natural products shows beneficial to combat obesity. In the present work, a new flavonoid named (2S,1″R,2″R)-4'-hydroxy-7-methoxy-6-(1,2,3-trihydroxy-3-methyl-butyl)-flavanone (1), along with seven known compounds (2-8) were isolated from the seeds of Cullen corylifolium. Their structures, including the absolute configurations, were determined by the analysis of comprehensive spectroscopic data and computational calculation methods. All isolates were evaluated for their diacylglycerol acyltransferase (DGAT) inhibitory activity. Compounds 1-4 exhibited different level of DGAT1 inhibitory activity with IC50 values ranging from 28.2 ± 1.1 to 127.3 ± 1.9 µM. In addition, 45 flavonoids which be evaluated for DGAT inhibitory activity were summarised and potential structure-activity relationships were discussed.


Assuntos
Diacilglicerol O-Aciltransferase , Fabaceae , Estrutura Molecular , Diacilglicerol O-Aciltransferase/análise , Relação Estrutura-Atividade , Flavonoides/farmacologia , Flavonoides/análise , Sementes/química
5.
Pharmaceuticals (Basel) ; 16(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37375766

RESUMO

Our previous study demonstrated that a selected ß-lactoglobulin-derived peptide (BLG-Pep) loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles protected mice against cow's milk allergy development. However, the mechanism(s) responsible for the interaction of the peptide-loaded PLGA nanoparticles with dendritic cells (DCs) and their intracellular fate was/were elusive. Förster resonance energy transfer (FRET), a distance-dependent non-radioactive energy transfer process mediated from a donor to an acceptor fluorochrome, was used to investigate these processes. The ratio of the donor (Cyanine-3)-conjugated peptide and acceptor (Cyanine-5) labeled PLGA nanocarrier was fine-tuned for optimal (87%) FRET efficiency. The colloidal stability and FRET emission of prepared NPs were maintained upon 144 h incubation in PBS buffer and 6 h incubation in biorelevant simulated gastric fluid at 37 °C. A total of 73% of Pep-Cy3 NP was internalized by DCs as quantified using flow cytometry and confirmed using confocal fluorescence microscopy. By real-time monitoring of the change in the FRET signal of the internalized peptide-loaded nanoparticles, we observed prolonged retention (for 96 h) of the nanoparticles-encapsulated peptide as compared to 24 h retention of the free peptide in the DCs. The prolonged retention and intracellular antigen release of the BLG-Pep loaded in PLGA nanoparticles in murine DCs might facilitate antigen-specific tolerance induction.

6.
J Antibiot (Tokyo) ; 75(7): 410-414, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459857

RESUMO

Chemical investigation of coastal saline soil-derived fungus Aspergillus flavipes RD-13 led to the isolation of two new seco-cytochalasins (1) and (2) along with nine known analogs. Their structures were elucidated by comprehensive spectral analysis, and the absolute configurations of these two new ones were determined through Rh2(OCOCF3)4-induced CD experiment and chemical interconversions. Moreover, the absolute configuration of a known compound named cytochalasins Z18 (3) was also determined for the first time. Structurally, compounds 1, 2 and 3 were the open ring derivatives of compounds 5, 8, and 4, respectively. All compounds were evaluated for their cytotoxic activities on A549, H1299 and H520 cells and 4 exhibited the strongest inhibitory activities towards the above cell lines with IC50 values of 0.15, 0.23 and 0.43 µg/mL, respectively. Preliminary structure-activity relationship analysis suggested the importance of macrocyclic ring in cytochalasins to confer cytotoxicity.


Assuntos
Citocalasinas , Solo , Aspergillus , Citocalasinas/química , Fungos , Estrutura Molecular
7.
Front Immunol ; 13: 1053107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703973

RESUMO

Cow's milk allergy is a common food allergy among infants. Improved hygiene conditions and loss of microbial diversity are associated with increased risk of allergy development. The intestinal immune system is essential for oral tolerance induction. In this respect, bacterial CpG DNA is known to drive Th1 and regulatory T-cell (Treg) development via Toll-Like-Receptor 9 (TLR-9) signaling, skewing away from the allergic Th2 phenotype. We aimed to induce allergen specific tolerance via oral delivery of poly (lactic-co-glycolic acid) nanoparticles (NP) co-encapsulated with a selected ß-lactoglobulin derived peptide (BLG-Pep) and TLR-9 ligand CpG oligodeoxynucleotide (CpG). In vivo, 3-4-week-old female C3H/HeOuJ mice housed in individually ventilated cages received 6-consecutive-daily gavages of either PBS, whey, BLG-Pep/NP, CpG/NP, a mixture of BLG-Pep/NP plus CpG/NP or co-encapsulated BLG-Pep+CpG/NP, before 5-weekly oral sensitizations with whey plus cholera toxin (CT) or only CT (sham) and were challenged with whey 5 days after the last sensitization. The co-encapsulated BLG-Pep+CpG/NP pretreatment, but not BLG-Pep/NP, CpG/NP or the mixture of BLG-Pep/NP plus CpG/NP, prevented the whey-induced allergic skin reactivity and prevented rise in serum BLG-specific IgE compared to whey-sensitized mice. Importantly, co-encapsulated BLG-Pep+CpG/NP pretreatment reduced dendritic cell (DC) activation and lowered the frequencies of PD-L1+ DC in the mesenteric lymph nodes compared to whey-sensitized mice. By contrast, co-encapsulated BLG-Pep+CpG/NP pretreatment increased the frequency of splenic PD-L1+ DC compared to the BLG-Pep/NP plus CpG/NP recipients, in association with lower Th2 development and increased Treg/Th2 and Th1/Th2 ratios in the spleen. Oral administration of PLGA NP co-encapsulated with BLG-Pep and CpG prevented rise in serum BLG-specific IgE and symptom development while lowering splenic Th2 cell frequency in these mice which were kept under strict hygienic conditions.


Assuntos
Hipersensibilidade a Leite , Nanopartículas , Bovinos , Camundongos , Feminino , Animais , Hipersensibilidade a Leite/prevenção & controle , Lactoglobulinas , Antígeno B7-H1 , Receptor Toll-Like 9 , Camundongos Endogâmicos C3H , Proteínas do Soro do Leite , Camundongos Endogâmicos , Peptídeos , Imunoglobulina E
8.
NPJ Precis Oncol ; 5(1): 51, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127768

RESUMO

Histone methyltransferase SETD2 plays a critical role in maintaining genomic integrity and stability. Here, we investigated the characteristics of SETD2 somatic mutation in the cancer genome atlas pan-cancer cohort. Our data revealed that, compared with SETD2 nonmutant patients, SETD2 mutant patients had higher tumor mutation burden and microsatellite instability. In addition, the transcriptions of most genes related to immune activities were upregulated in patients with SETD2 mutant tumors. Further examination of cancer patients treated with immune checkpoint inhibitors suggested SETD2 mutation was associated with favorable clinical outcomes. These results have implication for the personalization of cancer immunotherapy.

9.
Front Plant Sci ; 11: 571157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042188

RESUMO

Lead-zinc (Pb-Zn) mine tailings pose a great risk to the natural environment and human health because of their high toxicity. In this study, the responses of photosynthesis, chlorophyll fluorescence, and antioxidative enzyme of Melia azedarach and Ligustrum lucidum in the soil contaminated by Pb-Zn mine tailings were investigated. Results showed that Pb-Zn mine tailings significantly reduced net photosynthetic rates and leaf photosynthetic pigment content of both trees, and the reduction of net photosynthetic rates was mainly caused by their biochemical limitation (BL). The chlorophyll fluorescence parameters from Pb-Zn tailing stressed leaves indicated that Pb-Zn tailings affected PSII activity which was evident from the change values of energy fluxes per reaction center (RC): probability that an electron moves further than QA - (ETO/TRO), maximum quantum yield for primary photochemistry (TRO/ABS), the density of PSII RC per excited cross-section (RC/CSO), the absorption of antenna chlorophylls per PSII RC (ABS/RC), and the turnover number of QA reduction events (N). Pb-Zn mine tailings also affected the oxidation and reduction of PSI, which resulted in a great increase of reactive oxygen species (ROS) contents and then stimulated the rate of lipid peroxidation. Both trees exhibited certain antioxidative defense mechanisms as elevated superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, then declined under high level of Pb-Zn tailing treatment. Comparatively, L. lucidum showed less extent effect on photosynthesis and higher antioxidative enzyme activities than M. azedarach; thus L. lucidum was more tolerant than M. azedarach at least under the described Pb-Zn tailing treatment. These results indicate that the effect of Pb-Zn mine tailings on photosynthesis performance mainly related to imbalance of the PSII activity and PSI redox state in both trees. We propose that M. azedarach and L. lucidum could relieve the oxidative stress for phytoremediation under the appropriate Pb-Zn mine tailing content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA