Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 20(14): e2307116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988688

RESUMO

Iron trifluoride (FeF3) is attracting tremendous interest due to its lower cost and the possibility to enable higher energy density in lithium-ion batteries. However, its cycle performance deteriorates rapidly in less than 50 cycles at elevated temperatures due to cracking of the unstable cathode solid electrolyte interface (CEI) followed by active materials dissolution in liquid electrolyte. Herein, by engineering the salt composition, the Fe3O4-type CEI with the doping of boron (B) atoms in a polymer electrolyte at 60 °C is successfully stabilized. The cycle life of the well-designed FeF3-based composite cathode exceeds an unprecedented 1000 cycles and utilizes up to 70% of its theoretical capacities. Advanced electron microscopy combined with density functional theory (DFT) calculations reveal that the B in lithium salt migrates into the cathode and promotes the formation of an elastic and mechanic robust boron-contained CEI (BOR-CEI) during cycling, by which the durability of the CEI to frequent cyclic large volume changes is significantly enhanced. To this end, the notorious active materials dissolution is largely prohibited, resulting in a superior cycle life. The results suggest that engineering the CEI such as tuning its composition is a viable approach to achieving FeF3 cathode-based batteries with enhanced performance.

2.
Small ; 18(29): e2202069, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35739615

RESUMO

Replacing liquid electrolytes with solid polymer electrolytes (SPEs) is considered as a vital approach to developing sulfur (S)-based cathodes. However, the polysulfides shuttle and the growth of lithium (Li) dendrites are still the major challenges in polyethylene oxide (PEO)-based electrolyte. Here, an all-solid-state Li metal battery with flexible PEO-Li10 Si0.3 PS6.7 Cl1.8 (LSPSCl)-C-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) composite cathode (FCC) and PEO-LSPSCl-LiTFSI composite electrolyte (S-CPE) is designed. The initial capacity of the Li|S-CPE|FCC battery is 414 mAh g-1 with 97.8% capacity retention after 100 cycles at 0.1 A g-1 . Moreover, the battery displays remarkable capacity retention of 80% after 500 cycles at 0.4 A g-1 . Cryo-transmission electron microscopy (Cryo-TEM) reveals rich large-sized Li2 CO3 particles at the Li/PEO interface blocking the Li+ transport, but the layer with rich Li2 O nanocrystals, amorphous LiF and Li2 S at the Li/S-CPE interface suppresses the growth of lithium dendrite and stabilizes the interface. In situ optical microscopy demonstrates that the excellent cyclic stability of FCC is ascribed to the reversible shuttle of P-S-P species, resulting from the movement of ether backbone in PEO. This study provides strategies to mitigate the polysulfide shuttle effect and Li dendrite formation in designing high energy density solid-state Li-S-based batteries.

3.
Small ; 18(28): e2202006, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35689303

RESUMO

Conversion-type cathodes such as metal fluorides, especially FeF2 and FeF3 , are potential candidates to replace intercalation cathodes for the next generation of lithium ion batteries. However, the application of iron fluorides is impeded by their poor electronic conductivity, iron/fluorine dissolution, and unstable cathode electrolyte interfaces (CEIs). A facile route to fabricate a mechanical strong electrode with hierarchical electron pathways for FeF2 nanoparticles is reported here. The FeF2 /Li cell demonstrates remarkable cycle performances with a capacity of 300 mAh g-1 after a record long 4500 cycles at 1C. Meanwhile, a record stable high area capacity of over 6 mAh cm-2 is achieved. Furthermore, ultra-high rate capabilities at 20C and 6C for electrodes with low and high mass loading, respectively, are attained. Advanced electron microscopy reveals the formation of stable CEIs. The results demonstrate that the construction of viable electronic connections and favorable CEIs are the key to boost the electrochemical performances of FeF2 cathode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA