Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33567342

RESUMO

Clustered regularly interspaced short palindromic repeat-Cas12a has been harnessed to manipulate the human genome; however, low cleavage efficiency and stringent protospacer adjacent motif hinder the use of Cas12a-based therapy and applications. Here, we have described a directional evolving and screening system in human cells to identify novel FnCas12a variants with high activity. By using this system, we identified IV-79 (enhanced activity FnCas12a, eaFnCas12a), which possessed higher DNA cleavage activity than WT FnCas12a. Furthermore, to widen the target selection spectrum, eaFnCas12a was engineered through site-directed mutagenesis. eaFnCas12a and one engineered variant (eaFnCas12a-RR), used for correcting human RS1 mutation responsible for X-linked retinoschisis, had a 3.28- to 4.04-fold improved activity compared with WT. Collectively, eaFnCas12a and its engineered variants can be used for genome-editing applications that requires high activity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas do Olho/genética , Francisella/enzimologia , Mutação , Retinosquise/genética , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Células Cultivadas , Endodesoxirribonucleases/genética , Evolução Molecular , Francisella/genética , Francisella/isolamento & purificação , Edição de Genes/métodos , Humanos , Engenharia de Proteínas/métodos , Retinosquise/metabolismo , Retinosquise/patologia , Seleção Genética , Relação Estrutura-Atividade
2.
J Biol Chem ; 294(23): 9308-9315, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010827

RESUMO

CRISPR/Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. High-fidelity Cas9 variants have been identified; however, they often have reduced activity, constraining their utility, which presents a major challenge for their use in research applications and therapeutics. Here we developed a tRNAGln-processing system to restore the activity of multiple high-fidelity Cas9 variants in human cells, including SpCas9-HF1, eSpCas9, and xCas9. Specifically, acting on previous observations that small guide RNAs (sgRNAs) harboring an extra A or G (A/G) in the first 5' nucleotide greatly affect the activity of high-fidelity Cas9 variants and that tRNA-sgRNA fusions improve Cas9 activity, we investigated whether a GN20 sgRNA fused to different tRNAs (G-tRNA-N20) could restore the activity of SpCas9 variants in human cells. Using flow cytometry, a T7E1 assay, deep sequencing-based DNA cleavage activity assays, and HEK-293 cells, we observed that a tRNAGln-sgRNA fusion system enhanced the activity of Cas9 variants, which could be harnessed for efficient correction of a pathogenic mutation in the retinoschisin 1 (RS1) gene, resulting in 6- to 8-fold improved Cas9 activity. We propose that the tRNA-processing system developed here specifically for human cells could facilitate high-fidelity Cas9-mediated human genome-editing applications.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA de Transferência de Glutamina/metabolismo , Clivagem do DNA , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
3.
Hum Gene Ther ; 30(6): 673-681, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30588843

RESUMO

Traditional gene therapy (gene replacement) has made a breakthrough in treating inherited diseases. Adeno-associated virus (AAV) has emerged as a highly promising vector with innate ability, boosting the development of gene replacement and gene targeting. With the recent advance of engineered nucleases that work efficiently in human cells, AAV mediated-genome editing with nucleases has raised hopes for in situ gene therapy of inherited and non-inherited diseases. Here, the applications of AAV-mediated genome editing are highlighted, and the prospect of AAV and nucleases that will render extension of such success in clinical gene therapy is discussed.


Assuntos
Dependovirus/genética , Edição de Genes , Vetores Genéticos/genética , Animais , Dependovirus/classificação , Endonucleases/genética , Edição de Genes/métodos , Regulação Viral da Expressão Gênica , Genoma Humano , Genômica/métodos , Humanos , Integração Viral
4.
Biotechnol J ; 14(7): e1800689, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927491

RESUMO

Genome editing using RNA-guided nucleases in their ribonucleoprotein (RNP) form represents a promising strategy for gene modification and therapy because they are free of exogenous DNA integration and have reduced toxicity in vivo and ex vivo. However, genome editing by Cas9 nuclease from Staphylococcus aureus (SaCas9) has not been reported in its RNP form, which recognizes a longer protospacer adjacent motif (PAM), 5'-NNGRRT-3', compared with Streptococcus pyogenes Cas9 (SpCas9) of 5'-NGG-3' PAM. Here, SaCas9-RNP-mediated genome editing is reported in human cells. The SaCas9-RNP displayed efficient genome editing activities of enhanced green fluorescent protein (EGFP) coding gene as well as three endogenous genes (OPA1, RS1, and VEGFA). Further, SaCas9-RNP is successfully implemented to correct a pathogenic RS1 mutation for X-linked juvenile retinoschisis. It is also shown that off-target effects triggered by SaCas9-RNP are undetectable by targeted deep sequencing. Collectively, this study demonstrates the potential of SaCas9-RNP-mediated genome editing in human cells, which could facilitate genome-editing-based therapy.


Assuntos
Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Edição de Genes/métodos , Genoma Humano/genética , Ribonucleoproteínas , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/isolamento & purificação , Proteína 9 Associada à CRISPR/metabolismo , Escherichia coli/genética , Células HEK293 , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
5.
Biotechnol J ; 13(4): e1700561, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29247600

RESUMO

CRISPR/Cas9-mediated gene therapy holds great promise for the treatment of human diseases. The protospacer adjacent motif (PAM), the sequence adjacent to the target sequence, is an essential targeting component for the design of CRISPR/Cas9-mediated gene editing. However, currently, very few studies have attempted to directly study the PAM sequence in human cells. To address this issue, the authors develop a dual fluorescence reporter system that could be harnessed for identifying functional PAMs for genome editing endonuclease, including Cas9. With this system, the authors investigate the effects of different PAM sequences for SaCas9, which is small and has the advantage of allowing in vivo genome editing, and found only 5'-NNGRRT-3' PAM could induced sufficient target cleavage with multi-sites. The authors also found SaCas9 possesses higher activity than SpCas9 or FnCpf1 via plasmids (episomal) and chromosomes with integrated eGFP-based comparison. Taken together, the authors show that a dual fluorescence reporter system is a means to identifying a functional PAM and quantitatively comparing the efficiency of different genome editing endonucleases with the similar or identical target sequence in human cells.


Assuntos
DNA Intergênico , Endonucleases/metabolismo , Francisella/enzimologia , Staphylococcus aureus/enzimologia , Streptococcus pyogenes/enzimologia , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Engenharia Genética , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA