Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Ann Surg ; 279(4): 605-612, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37965767

RESUMO

OBJECTIVE: This study aimed to estimate whether the potential short-term advantages of laparoscopic pancreaticoduodenectomy (LPD) could allow patients to recover in a more timely manner and achieve better long-term survival than with open pancreaticoduodenectomy (OPD) in patients with pancreatic or periampullary tumors. BACKGROUND: LPD has been demonstrated to be feasible and may have several potential advantages over OPD in terms of shorter hospital stay and accelerated recovery than OPD. METHODS: This noninferiority, open-label, randomized clinical trial was conducted in 14 centers in China. The initial trial included 656 eligible patients with pancreatic or periampullary tumors enrolled from May 18, 2018, to December 19, 2019. The participants were randomized preoperatively in a 1:1 ratio to undergo either LPD (n=328) or OPD (n=328). The 3-year overall survival (OS), quality of life, which was assessed using the 3-level version of the European Quality of Life-5 Dimensions, depression, and other outcomes were evaluated. RESULTS: Data from 656 patients [328 men (69.9%); mean (SD) age: 56.2 (10.7) years] who underwent pancreaticoduodenectomy were analyzed. For malignancies, the 3-year OS rates were 59.1% and 54.3% in the LPD and OPD groups, respectively ( P =0.33, hazard ratio: 1.16, 95% CI: 0.86-1.56). The 3-year OS rates for others were 81.3% and 85.6% in the LPD and OPD groups, respectively ( P =0.40, hazard ratio: 0.70, 95% CI: 0.30-1.63). No significant differences were observed in quality of life, depression and other outcomes between the 2 groups. CONCLUSION: In patients with pancreatic or periampullary tumors, LPD performed by experienced surgeons resulted in a similar 3-year OS compared with OPD. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03138213.


Assuntos
Laparoscopia , Neoplasias Pancreáticas , Masculino , Humanos , Pessoa de Meia-Idade , Pancreaticoduodenectomia/métodos , Seguimentos , Qualidade de Vida , Laparoscopia/métodos , Tempo de Internação , Estudos Retrospectivos , Complicações Pós-Operatórias/cirurgia
2.
BMC Med ; 22(1): 57, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317232

RESUMO

BACKGROUND: Abnormal placental development is a significant factor contributing to perinatal morbidity and mortality, affecting approximately 5-7% of pregnant women. Trophoblast syncytialization plays a pivotal role in the establishment and maturation of the placenta, and its dysregulation is closely associated with several pregnancy-related disorders, including preeclampsia and intrauterine growth restriction. However, the underlying mechanisms and genetic determinants of syncytialization are largely unknown. METHODS: We conducted a systematic drug screen using an epigenetic compound library to systematically investigate the epigenetic mechanism essential for syncytialization, and identified mixed lineage leukemia 1 (MLL1), a histone 3 lysine 4 methyltransferase, as a crucial regulator of trophoblast syncytialization. BeWo cells were utilized to investigate the role of MLL1 during trophoblast syncytialization. RNA sequencing and CUT&Tag were further performed to search for potential target genes and the molecular pathways involved. Human placenta tissue was used to investigate the role of MLL1 in TEA domain transcription factor 4 (TEAD4) expression and the upstream signaling during syncytialization. A mouse model was used to examine whether inhibition of MLL1-mediated H3K4me3 regulated placental TEAD4 expression and fetoplacental growth. RESULTS: Genetic knockdown of MLL1 or pharmacological inhibition of the MLL1 methyltransferase complex (by MI-3454) markedly enhanced syncytialization, while overexpression of MLL1 inhibited forskolin (FSK)-induced syncytiotrophoblast formation. In human placental villous tissue, MLL1 was predominantly localized in the nuclei of cytotrophoblasts. Moreover, a notable upregulation in MLL1 expression was observed in the villus tissue of patients with preeclampsia compared with that in the control group. Based on RNA sequencing and CUT&Tag analyses, depletion of MLL1 inhibited the Hippo signaling pathway by suppressing TEAD4 expression by modulating H3K4me3 levels on the TEAD4 promoter region. TEAD4 overexpression significantly reversed the FSK-induced or MLL1 silencing-mediated trophoblast syncytialization. Additionally, decreased hypoxia-inducible factor 1A (HIF1A) enrichment at the MLL1 promoter was observed during syncytialization. Under hypoxic conditions, HIF1A could bind to and upregulate MLL1, leading to the activation of the MLL1/TEAD4 axis. In vivo studies demonstrated that the administration of MI-3454 significantly enhanced fetal vessel development and increased the thickness of the syncytial layer, thereby supporting fetoplacental growth. CONCLUSIONS: These results revealed a novel epigenetic mechanism underlying the progression of syncytialization with MLL1, and suggest potential avenues for identifying new therapeutic targets for pregnancy-related disorders.


Assuntos
Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide , Placenta , Pré-Eclâmpsia , Animais , Feminino , Humanos , Camundongos , Gravidez , Epigênese Genética , Placenta/metabolismo , Fatores de Transcrição de Domínio TEA , Trofoblastos/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo
3.
Biol Reprod ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780057

RESUMO

Inappropriate endometrial stromal decidualization has been implied as an important reason of many pregnancy-related complications, such as unexplained recurrent spontaneous abortion (URSA), preeclampsia and intrauterine growth restriction. Here, we observed that thrombospondin-1 (THBS1), an adhesive glycoprotein, was significantly downregulated in endometrial decidual cells from patients with URSA. The immortalized human endometrial stromal cell line T-HESC was used to investigate the possible THBS1-mediated regulation of decidualization. In vitro experiments found that the expression level of THBS1 increased with the normal decidualization process. Knockdown of THBS1 could decrease the expression levels of prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP1), two acknowledged human decidualization markers. Whereas, THBS1 overexpression could reverse these effects. The RNA sequencing results demonstrated that the extracellular regulated protein kinases (ERK) signaling pathway was potentially affected by the knockdown of THBS1. And we further confirmed that the regulation of THBS1 on decidualization was achieved through the ERK signaling pathway by the treatment of inhibitors. Moreover, knockdown of THBS1 in pregnant mice could impair decidualization and result in an increased fetus resorption rate. Altogether, our study demonstrated a crucial role of THBS1 in the pathophysiological process of URSA and provided some new insights into the research of pregnancy-related complications.

4.
Reproduction ; 167(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236723

RESUMO

In brief: The proliferation of the endometrium is regulated by histone methylation. This study shows that decreased NSD2 impairs proliferative-phase endometrial stromal cell proliferation in patients with recurrent implantation failure via epigenetic reprogramming of H3K36me2 methylation on the promoter region of MCM7. Abstract: Recurrent implantation failure (RIF) is a formidable challenge in assisted reproductive technology because of its unclear molecular mechanism. Impaired human endometrial stromal cell (HESC) proliferation disrupts the rhythm of the menstrual cycle, resulting in devastating disorders between the embryo and the endometrium. The molecular function of histone methylation enzymes in modulating HESC proliferation remains largely uncharacterized. Herein, we found that the levels of histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2) and the dimethylation of lysine 36 on histone H3 are decreased significantly in the proliferative-phase endometrium of patients with RIF. Knockdown of NSD2 in an HESC cell line markedly impaired cell proliferation and globally reduced H3K36me2 binding to chromatin, leading to altered expression of many genes. Transcriptomic analyses revealed that cell cycle-related gene sets were downregulated in the endometrium of patients with RIF and in NSD2­knockdown HESCs. Furthermore, RNA-sequencing and CUT&Tag sequencing analysis suggested that NSD2 knockdown reduced the binding of H3K36me2 to the promoter region of cell cycle marker gene MCM7 (encoding minichromosome maintenance complex component 7) and downregulated its expression. The interaction of H3K36me2 with the MCM7 promoter was verified using chromatin immunoprecipitation-quantitative real-time PCR. Our results demonstrated a unifying epigenome-scale mechanism by which decreased NSD2 impairs endometrial stromal cell proliferation in the proliferative-phase endometrium of patients with RIF.


Assuntos
Endométrio , Histonas , Feminino , Humanos , Proliferação de Células , Cromatina/metabolismo , Endométrio/metabolismo , Histonas/metabolismo , Células Estromais/metabolismo
5.
Opt Lett ; 49(4): 850-853, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359198

RESUMO

Lithium niobate (LN) crystal plays important roles in future integrated photonics, but it is still a great challenge to efficiently fabricate three-dimensional micro-/nanostructures on it. Here, a femtosecond laser direct writing-assisted liquid back-etching technology (FsLDW-LBE) is proposed to achieve the three-dimensional (3D) microfabrication of lithium niobate (LN) with high surface quality (Ra = 0.422 nm). Various 3D structures, such as snowflakes, graphic arrays, criss-cross arrays, and helix arrays, have been successfully fabricated on the surface of LN crystals. As an example, a microcone array was fabricated on LN crystals, which showed a strong second harmonic signal enhancement with up to 12 times bigger than the flat lithium niobate. The results indicate that the method provides a new approach for the microfabrication of lithium niobate crystals for nonlinear optics.

6.
Biometrics ; 80(2)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38837902

RESUMO

In mobile health, tailoring interventions for real-time delivery is of paramount importance. Micro-randomized trials have emerged as the "gold-standard" methodology for developing such interventions. Analyzing data from these trials provides insights into the efficacy of interventions and the potential moderation by specific covariates. The "causal excursion effect," a novel class of causal estimand, addresses these inquiries. Yet, existing research mainly focuses on continuous or binary data, leaving count data largely unexplored. The current work is motivated by the Drink Less micro-randomized trial from the UK, which focuses on a zero-inflated proximal outcome, i.e., the number of screen views in the subsequent hour following the intervention decision point. To be specific, we revisit the concept of causal excursion effect, specifically for zero-inflated count outcomes, and introduce novel estimation approaches that incorporate nonparametric techniques. Bidirectional asymptotics are established for the proposed estimators. Simulation studies are conducted to evaluate the performance of the proposed methods. As an illustration, we also implement these methods to the Drink Less trial data.


Assuntos
Simulação por Computador , Telemedicina , Humanos , Telemedicina/estatística & dados numéricos , Estatísticas não Paramétricas , Causalidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Modelos Estatísticos , Biometria/métodos , Interpretação Estatística de Dados
7.
J Thromb Thrombolysis ; 57(2): 302-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063944

RESUMO

BACKGROUND: We investigated evolocumab's real-world effectiveness and safety on a background of statin therapy in the acute phase of ischemic stroke (IS) patients with a very high-risk of atherosclerotic cardiovascular disease (ASCVD). METHODS: A real-world, single-center, retrospective study was conducted in the neurology department at Tianjin Huanhu Hospital in China. Patients were divided into two groups: evolocumab treatment (140 mg every two weeks) or the standard of care (SOC) group. The primary efficacy outcome of the study was the achievement of a targeted lipid control rate and the incidence of major adverse cardiovascular events (MACE) by the end of the follow-up. MACE was defined as a composite of various cardiovascular events, cerebrovascular events such as stroke or TIA, and event-related deaths. Propensity score matching (PSM) analysis was utilized to account for confounding factors between groups. Survival analyses were performed using the Kaplan-Meier method and COX regression modeling. RESULTS: 1080 AIS patients with very high-risk ASCVD were recruited. After PSM, there were 528 individuals, with 206 in the evolocumab group and 322 in the SOC group. At 12 months of follow-up, the proportion of LDL-C < 1.4mmol/L and ≥ 50% reduction was 44.91% in the evolocumab group, compared with only 3.12% of SOC-treated patients (p < 0.01). The median follow-up time for clinical events was 15 months. The evolocumab group was associated with a lower risk of cerebrovascular events compared to the SOC group (HR, 0.45; 95% CI, 0.23-0.89; p = 0.02). CONCLUSIONS: This real-world study suggested that evolocumab on a background of statin reduced the LDL-C levels significantly and lowered the incidence of recurrent cerebrovascular events in the very high-risk ASCVD patients with AIS in China.


Assuntos
Anticorpos Monoclonais Humanizados , Anticolesterolemiantes , Aterosclerose , Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , AVC Isquêmico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Anticolesterolemiantes/efeitos adversos , AVC Isquêmico/tratamento farmacológico , LDL-Colesterol , Doenças Cardiovasculares/tratamento farmacológico , Estudos Retrospectivos , Anticorpos Monoclonais/efeitos adversos , Aterosclerose/tratamento farmacológico , Resultado do Tratamento
8.
J Nanobiotechnology ; 22(1): 242, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735936

RESUMO

BACKGROUND: Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have gained significant attention in various biomedical applications. Although previous studies have described the accumulation and associated damage of Ti3C2 nanosheets in the testes and placenta. However, it is currently unclear whether Ti3C2 nanosheets can be translocated to the ovaries and cause ovarian damage, thereby impairing ovarian functions. RESULTS: We established a mouse model with different doses (1.25, 2.5, and 5 mg/kg bw/d) of Ti3C2 nanosheets injected intravenously for three days. We demonstrated that Ti3C2 nanosheets can enter the ovaries and were internalized by granulosa cells, leading to a decrease in the number of primary, secondary and antral follicles. Furthermore, the decrease in follicles is closely associated with higher levels of FSH and LH, as well as increased level of E2 and P4, and decreased level of T in mouse ovary. In further studies, we found that exposure toTi3C2 nanosheets increased the levels of Beclin1, ATG5, and the ratio of LC3II/Ι, leading to autophagy activation. Additionally, the level of P62 increased, resulting in autophagic flux blockade. Ti3C2 nanosheets can activate autophagy through the PI3K/AKT/mTOR signaling pathway, with oxidative stress playing an important role in this process. Therefore, we chose the ovarian granulosa cell line (KGN cells) for in vitro validation of the impact of autophagy on the hormone secretion capability. The inhibition of autophagy initiation by 3-Methyladenine (3-MA) promoted smooth autophagic flow, thereby partially reduced the secretion of estradiol and progesterone by KGN cells; Whereas blocking autophagic flux by Rapamycin (RAPA) further exacerbated the secretion of estradiol and progesterone in cells. CONCLUSION: Ti3C2 nanosheet-induced increased secretion of hormones in the ovary is mediated through the activation of autophagy and impairment of autophagic flux, which disrupts normal follicular development. These results imply that autophagy dysfunction may be one of the underlying mechanisms of Ti3C2-induced damage to ovarian granulosa cells. Our findings further reveal the mechanism of female reproductive toxicity induced by Ti3C2 nanosheets.


Assuntos
Autofagia , Células da Granulosa , Nanoestruturas , Ovário , Titânio , Animais , Feminino , Autofagia/efeitos dos fármacos , Titânio/toxicidade , Titânio/química , Titânio/farmacologia , Camundongos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Nanoestruturas/química , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Phytochem Anal ; 35(2): 380-390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37886810

RESUMO

INTRODUCTION: Monosaccharide compositions analysis (MCA) is indispensable for structural characterisations and structure-activity relationships of plant polysaccharides. OBJECTIVES: To develop a concise and direct MCA method, we established a quantitative analysis of the multi-monosaccharaides by single marker (QAMS) by high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD) method. METHODOLOGY: A stable and reproducible HPAEC-PAD method for simultaneous determination of aldoses, ketoses and uronic acids (i.e., l-arabinose, d-xylose, d-ribose, l-rhamnose, d-fucose, d-mannose, d-glucose, d-galactose, d-fructose, d-glucuronic acid and d-galacturonic acid) was established by systematic optimisation of stationary phases, column temperatures and elution programmes. On this basis, the QAMS method was proposed through comprehensive investigations of relative correction factor (RCF) variations under different influencing factors, for example, sample concentrations, flow rates, and column temperatures. RESULTS: Using rhamnose as an internal reference standard, the contents of the other monosaccharide components in polysaccharides from Panax quinquefolium L. and Achyranthes bidentata Bl. samples were simultaneously determined by QAMS, and there was no significant difference between the results from the QAMS and external standard method (t test, P > 0.520). In addition, a MCA fingerprinting of 30 batches of P. quinquefolium polysaccharide was established by HPAEC-PAD, and six common peaks were assigned and determined. CONCLUSIONS: The established HPAEC-PAD-QAMS method was successfully applied to the MCA of polysaccharides from P. quinquefolium and A. bidentata after optimisation of hydrolysis conditions. HPAEC-PAD-QAMS was proposed and established for MCA of plant polysaccharides for the first time.


Assuntos
Polissacarídeos , Ramnose , Polissacarídeos/análise , Polissacarídeos/química , Monossacarídeos/análise , Monossacarídeos/química , Glucose
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339057

RESUMO

The red flesh coloration of apples is a result of a biochemical pathway involved in the biosynthesis of anthocyanins and anthocyanidins. Based on apple genome analysis, a high number of regulatory genes, mainly transcription factors such as MYB, which are components of regulatory complex MYB-bHLH-WD40, and several structural genes (PAL, 4CL, CHS, CHI, F3H, DFR, ANS, UFGT) involved in anthocyanin biosynthesis, have been identified. In this study, we investigated novel genes related to the red-flesh apple phenotype. These genes could be deemed molecular markers for the early selection of new apple cultivars. Based on a comparative transcriptome analysis of apples with different fruit-flesh coloration, we successfully identified and characterized ten potential genes from the plant hormone transduction pathway of auxin (GH3); cytokinins (B-ARR); gibberellins (DELLA); abscisic acid (SnRK2 and ABF); brassinosteroids (BRI1, BZR1 and TCH4); jasmonic acid (MYC2); and salicylic acid (NPR1). An analysis of expression profiles was performed in immature and ripe fruits of red-fleshed cultivars. We have uncovered genes mediating the regulation of abscisic acid, salicylic acid, cytokinin, and jasmonic acid signaling and described their role in anthocyanin biosynthesis, accumulation, and degradation. The presented results underline the relationship between genes from the hormone signal transduction pathway and UFGT genes, which are directly responsible for anthocyanin color transformation as well as anthocyanin accumulation during apple-fruit ripening.


Assuntos
Ciclopentanos , Malus , Oxilipinas , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
11.
Biochem Biophys Res Commun ; 651: 62-69, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36791500

RESUMO

Obesity is a major risk factor for type 2 diabetes, coronary heart disease, and strok. These diseases are associated with profound alterations in gene expression in metabolic tissues. Epigenetic-mediated regulation of gene expression is one mechanism through which environmental factors, such as diet, modify gene expression and disease predisposition. However, epigenetic control of gene expression in obesity and insulin resistance is not fully characterized. We discovered that liver-specific stearoyl-CoA desaturase-1 (Scd1) knockout mice (LKO) fed a high-carbohydrate low-fat diet exhibit dramatic changes in hepatic gene expression and metabolites of the folate cycle and one-carbon metabolism respectively for the synthesis of S-adenosylmethionine (SAM). LKO mice show an increased ratio of S-adenosylmethionine to S-adenosylhomocysteine, a marker for increased cellular methylation capacity. Furthermore, expression of DNA and histone methyltransferase genes is up-regulated while the mRNA and protein levels of the non-DNA methyltransferases including phosphatidylethanolamine methyltransferase (PEMT), Betaine homocysteine methyltransferase (Bhmt), and the SAM-utilizing enzymes such as glycine-N-methyltransferase (Gnmt) and guanidinoacetate methyltransferase (Gamt) are generally down-regulated. Feeding LKO mice a high carbohydrate diet supplemented with triolein, but not tristearin, and increased endogenous hepatic synthesis of oleate but not palmitoleate in Scd1 global knockout mice normalized one carbon gene expression and metabolite levels. Additionally, changes in one carbon gene expression are independent of the PGC-1α-mediated ER stress response previously reported in the LKO mice. Together, these results highlight the important role of oleate in maintaining one-carbon cycle homeostasis and point to observed changes in one-carbon metabolism as a novel mediator of the Scd1 deficiency-induced liver phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , Ácido Oleico , Camundongos , Animais , Ácido Oleico/metabolismo , S-Adenosilmetionina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Carboidratos , Camundongos Knockout , Obesidade/metabolismo , Carbono/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo
12.
Cytokine ; 172: 156375, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797357

RESUMO

PURPOSE: This study aims to investigate the anti-inflammatory and antifungal properties of thymoquinone (TQ) and elucidate its mechanism of action in the context of C. albicans keratitis. METHODS: Various methods were employed to identify a safe and effective concentration of TQ with antifungal properties, including the determination of the minimum inhibitory concentration (MIC), the cell counting kit-8 (CCK-8) test, and the Draize experiment. The severity of fungal keratitis (FK) was assessed through clinical ratings and slit-lamp imaging. Fungus burden was determined using plate counting and periodic acid Schiff (PAS) staining. Neutrophil infiltration and activity were investigated through immunofluorescence staining (IFS), myeloperoxidase (MPO) analysis, and hematoxylin and eosin (HE) staining. To explore the anti-inflammatory effects of TQ and its mechanism of action, we employed RT-PCR, ELISA, and western blot techniques. RESULTS: TQ effectively controlled fungal growth at a concentration of 50 µg/mL while preserving the integrity of mouse corneas. Human corneal epithelial cells (HCECs) remained unaffected by TQ at concentrations ≤ 3.75 µg/mL. Treatment with TQ led to significant improvements in clinical scores, fungal burden, neutrophil infiltration, and the expression of inflammatory factors compared to the DMSO group. Moreover, TQ demonstrated the ability to reduce the levels of inflammatory factors in HCECs stimulated by C. albicans. Additionally, TQ enhanced the expressions of Nrf2 and HO-1 in mouse corneas. The downregulation of cytokines induced by TQ was reversed upon pretreatment with inhibitors of Nrf2 or HO-1. CONCLUSION: TQ exhibits a protective effect in the context of C. albicans keratitis through multiple mechanisms, including inhibition of C. albicans growth, reduction of neutrophil recruitment, activation of the Nrf2/HO-1 pathway, and limitation of the expression of pro-inflammatory factors.


Assuntos
Candida albicans , Ceratite , Animais , Camundongos , Humanos , Candida albicans/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antifúngicos/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Inflamação/tratamento farmacológico , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL
13.
Opt Lett ; 48(10): 2752-2755, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186757

RESUMO

Integrated cross-scale milli/microlenses offer irreplaceable functions in modern integrated optics with the advantage of reducing the size of the optical system to millimeters or microns. However, the technologies for fabricating millimeter-scale lenses and microlenses are always incompatible, which makes the successful fabrication of cross-scale milli/microlenses with a controlled morphology challenging. Here, ion beam etching is proposed as a means to fabricate smooth millimeter-scale lenses on various hard materials. In addition, by combining femtosecond laser modification and ion beam etching, an integrated cross-scale concave milli/microlens (27,000 microlenses on a lens with a diameter of 2.5 mm) is demonstrated on fused silica, and can be used as the template for a compound eye. The results provide a new, to the best of our knowledge, route for the flexible fabrication of cross-scale optical components for modern integrated optical systems.

14.
Am J Public Health ; 113(1): 60-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413704

RESUMO

Just-in-time adaptive interventions (JITAIs) represent an intervention design that adapts the provision and type of support over time to an individual's changing status and contexts, intending to deliver the right support on the right occasion. As a novel strategy for delivering mobile health interventions, JITAIs have the potential to improve access to quality care in underserved communities and, thus, alleviate health disparities, a significant public health concern. Valid experimental designs and analysis methods are required to inform the development of JITAIs. Here, we briefly review the cutting-edge design of microrandomized trials (MRTs), covering both the classical MRT design and its outcome-adaptive counterpart. Associated statistical challenges related to the design and analysis of MRTs are also discussed. Two case studies are provided to illustrate the aforementioned concepts and designs throughout the article. We hope our work leads to better design and application of JITAIs, advancing public health research and practice. (Am J Public Health. 2023;113(1):60-69. https://doi.org/10.2105/AJPH.2022.307150).


Assuntos
Saúde Pública , Telemedicina , Humanos , Telemedicina/métodos , Projetos de Pesquisa
15.
Cell Biol Toxicol ; 39(3): 1077-1098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773530

RESUMO

Uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects. Recent advances in molecular technologies have allowed the unprecedented mapping of epigenetic modifications during embryo implantation. DNA methyltransferase 3a (DNMT3A) and DNMT3B are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. It was reported that conditional knockout of Dnmt3a in the uterus does not markedly affect endometrial function during embryo implantation, but the tissue-specific functions of Dnmt3b in the endometrium during embryo implantation remain poorly understood to investigate the role of Dnmt3b during peri-implantation period. Here, we generated Dnmt3b conditional knockout (Dnmt3bd/d) female mice using progesterone receptor-Cre mice and examined the role of Dnmt3b during embryo implantation. Dnmt3bd/d female mice exhibited compromised fertility, which was associated with defective decidualization, but not endometrial receptivity. Furthermore, results showed loss of Dnmt3b did not lead to altered genomic methylation patterns of the decidual endometrium during early pregnancy. Transcriptome sequencing analysis of uteri from day 6 pregnant mice identified phosphoglycerate kinase 1 (Pgk1) as one of the most variable genes in Dnmt3bd/d decidual endometrium. Potential roles of PGK1 in the decidualization process during early pregnancy were confirmed. Lastly, the compromised decidualization upon the downregulation of Dnmt3b could be reversed by overexpression of Pgk1. Collectively, our findings indicate that uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects.


Assuntos
Decídua , Útero , Animais , Feminino , Camundongos , Gravidez , Decídua/fisiologia , Metilação de DNA/genética , Implantação do Embrião/fisiologia , Endométrio/metabolismo , DNA Metiltransferase 3B
16.
Environ Res ; 236(Pt 1): 116761, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516265

RESUMO

Excessive nitrogen (N) fertilization in agroecological systems increases nitrous oxide (N2O) emissions. 3,4-dimethylpyrazole phosphate (DMPP) is used to mitigate N2O losses. The influence of DMPP efficiency on N2O mitigation was clearly affected by spatiotemporal heterogeneity. Using field and incubation experiments combined with metagenomic sequencing, we aimed to investigate DMPP efficiency and the underlying microbial mechanisms in dark-brown (Siping, SP), fluvo-aquic (Cangzhou, CZ; Xinxiang, XX), and red soil (Wenzhou, WZ) from diverse climatic zones. In the field experiments, the DMPP efficiency in N2O mitigation ranged from 51.6% to 89.9%, in the order of XX, CZ, SP, and WZ. The DMPP efficiency in the incubation experiments ranged from 58.3% to 93.9%, and the order of efficiency from the highest to lowest was the same as that of the field experiments. Soil organic matter, total N, pH, texture, and taxonomic and functional α-diversity were important soil environment and microbial factors for DMPP efficiency. DMPP significantly enriched ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB), which promoted N-cycling with low N2O emissions. Random forest (RF) and regression analyses found that an AOA (Nitrosocosmicus) and NOB (Nitrospina) demonstrated important and positive correlation with DMPP efficiency. Moreover, genes associated with carbohydrate metabolism were important for DMPP efficiency and could influenced N-cycling and DMPP metabolism. The similar DMPP efficiency indicated that the variation in DMPP efficiency was significantly due to soil physicochemical and microbial variations. In conclusion, filling the knowledge gap regarding the response of DMPP efficiency to abiotic and biotic factors could be beneficial in DMPP applications, and in adapting more efficient strategies to improve DMPP efficiency and mitigate N2O emissions in multiple regions.


Assuntos
Óxido Nitroso , Fosfatos , Fosfatos/análise , Iodeto de Dimetilfenilpiperazina/metabolismo , Bactérias/genética , Bactérias/metabolismo , Solo , China , Amônia , Nitritos/análise , Nitritos/metabolismo , Microbiologia do Solo , Fertilizantes/análise
17.
Gen Comp Endocrinol ; 336: 114244, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841441

RESUMO

Kisspeptin, a kind of neuropeptide, is involved in various physiological processes such as tumor metastasis inhibition and reproductive regulation due to its ability to interact with Kisspeptin receptor-Kissr. In teleost, Kisspeptin/Kissr system stimulates the hypothalamus-pituitary-gonadal axis (HPG axis), which is crucial for the reproductive regulation. Compared to one Kisspeptin protein Kiss1 was existed in mammals, two Kisspeptin were identified in sturgeon species, including Kiss1 and Kiss2, with specific receptors of Kissr1 and Kissr2, respectively. However, few reports described the effects of the two isoforms of Kisspeptin on the reproductive regulation in sturgeon. The core peptides of Kiss1 and Kiss2 (Kiss1-10 and Kiss2-10) of Dabry's sturgeon were successfully synthesized to explore the functional influence of Kisspeptin on the sturgeon HPG axis in the present study. The present findings suggested that intraperitoneal injection of Kiss1-10 and Kiss2-10 could significantly up-regulate the mRNA expression of Gnrh、Fsh and Lh in the hypothalamus and pituitary and the content of Lh protein in the serum. Assays of Kisspeptin-treated cells demonstrated that Kiss1-10 and Kiss2-10 can significantly promote the expression of Gnrh in hypothalamus cells and Lh and Fsh in pituitary cells of Dabry's sturgeon, indicating their direct-acting effect on pituitary cells and regulatory function on the reproductive development of sturgeon. This study described the reproductive function of the Kisspeptin in the Dabry's sturgeon for the first time, and provided supportive reference for the development of high-efficiency ripening technologies of artificially breeding sturgeon.


Assuntos
Peixes , Kisspeptinas , Animais , Kisspeptinas/metabolismo , Peixes/metabolismo , Reprodução , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Foliculoestimulante/metabolismo , Mamíferos/metabolismo
18.
Ecotoxicol Environ Saf ; 251: 114531, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641866

RESUMO

The environmental pollutant Benzo(a)pyrene (BaP) has an adverse effect on the reproductive performance of mammals. We previously showed that BaP treatment during early pregnancy damages endometrial morphology and impairs embryo implantation. Endometrial decidualization at the implantation site (IS) after embryo implantation is crucial for pregnancy maintenance and placental development. The balance between proliferation and differentiation in endometrial stromal cells (ESCs) is a crucial event of decidualization, which is regulated by the cell cycle. Here, we report that abnormal decidualization caused by BaP is associated with cell cycle disturbance of stromal cells. The mice in the treatment group were gavaged with 0.2 mg/kg/day BaP from day 1-8 of pregnancy, while those in control were gavaged with corn oil in parallel. BaP damaged the decidualization of ESCs and reduced the number of polyploid cells. Meanwhile, BaP up-regulated the expression of Ki67 and PCNA, affecting the differentiation of stromal cells. The cell cycle progression analysis during decidualization in vivo and in vitro showed that BaP induced polyploid cells deficiency with enhanced expressions of CyclinA(E)/CDK2, CyclinD/CDK4 and CyclinB/CDK1, which promote the transformation of cells from G1 to S phase and simultaneously activate the G2/M phase. The above results indicated that BaP exposure accelerates cell cycle progression, promotes ESC proliferation, inhibits differentiation, and impedes proper decidualization and polyploidy development. Thus, the imbalance of ESC proliferation and differentiation would be an important mechanism for BaP-induced defective decidualization.


Assuntos
Benzo(a)pireno , Decídua , Gravidez , Camundongos , Feminino , Animais , Decídua/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Placenta , Diferenciação Celular , Proliferação de Células , Células Estromais/metabolismo , Poliploidia , Mamíferos
19.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047551

RESUMO

The fertilization process is a critical step in plant reproduction. However, the mechanism of action and mode of regulation of the fertilization process in gymnosperms remain unclear. In this study, we investigated the molecular regulatory networks involved in the fertilization process in Korean pine ovules through anatomical observation, physiological and biochemical assays, and transcriptome sequencing technology. The morphological and physiological results indicated that fertilization proceeds through the demise of the proteinaceous vacuole, egg cell division, and pollen tube elongation. Auxin, cytokinin, soluble sugar, and soluble starch contents begin to decline upon fertilization. Transcriptomic data analysis revealed a large number of differentially expressed genes at different times before and after fertilization. These genes were primarily involved in pathways associated with plant hormone signal transduction, protein processing in the endoplasmic reticulum, fructose metabolism, and mannose metabolism. The expression levels of several key genes were further confirmed by qRT-PCR. These findings represent an important step towards understanding the mechanisms underlying morphological changes in the Korean pine ovule during fertilization, and the physiological and transcriptional analyses lay a foundation for in-depth studies of the molecular regulatory network of the Korean pine fertilization process.


Assuntos
Óvulo Vegetal , Transcriptoma , Óvulo Vegetal/genética , Proteínas de Choque Térmico/metabolismo , Perfilação da Expressão Gênica , Transdução de Sinais , Metabolismo dos Carboidratos/genética , Fertilização , Hormônios/metabolismo , República da Coreia , Regulação da Expressão Gênica de Plantas
20.
J Environ Manage ; 339: 117927, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075633

RESUMO

Straw retention (SR) and organic fertilizer (OF) application contribute to improve soil quality, but it is unclear how the soil microbial assemblage under organic amendments mediate soil biochemical metabolism pathways to perform it. This study collected soil samples from wheat field under different application of fertilizer (chemical fertilizer, as control; SR, and OF) in North China Plain, and systematically investigated the interlinkages among microbe assemblages, metabolites, and physicochemical properties. Results showed that the soil organic carbon (SOC) and permanganate oxidizable organic carbon (LOC) in soil samples followed the trend as OF > SR > control, and the activity of C-acquiring enzymes presented significantly positive correlation with SOC and LOC. In organic amendments, bacteria and fungi community were respectively dominated by deterministic and stochastic processes, while OF exerted more selective pressure on soil microbe. Compared with SR, OF had greater potential to boost the microbial community robustness through increasing the natural connectivity and stimulating fungal taxa activities in inter-kingdom microbial networks. Altogether 67 soil metabolites were significantly affected by organic amendments, most of them belonged to benzenoids (Ben), lipids and lipid-like molecules (LL), and organic acids and derivatives (OA). These metabolites were mainly derived from lipid and amino acid metabolism pathways. A list of keystone genera such as stachybotrys and phytohabitans were identified as important to soil metabolites, SOC, and C-acquiring enzyme activity. Structural equation modeling showed that soil quality properties were closely associated with LL, OA, and PP drove by microbial community assembly and keystone genera. Overall, these findings suggested that straw and organic fertilizer might drive keystone genera dominated by determinism to mediate soil lipid and amino acid metabolism for improving soil quality, which provided new insights into understanding the microbial-mediated biological process in amending soil quality.


Assuntos
Microbiota , Solo , Solo/química , Carbono/química , Agricultura/métodos , Triticum/metabolismo , Zea mays/metabolismo , Fertilizantes/análise , Microbiologia do Solo , Aminoácidos/metabolismo , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA