RESUMO
Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149â T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007â T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.
Assuntos
Lobos , Cães , Animais , Lobos/genética , Herança Multifatorial , Genoma , Genômica , Sequência de BasesRESUMO
BACKGROUND: Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS: We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS: Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.
Assuntos
Criação de Animais Domésticos , Povo Asiático , Dieta , Leite , Animais , Cães/genética , Humanos , Tibet , RuminantesRESUMO
Coexistence and cooperation between dogs and humans over thousands of years have supported convergent evolutionary processes in the two species. Previous studies found that Eurasian dogs evolved into a distinct geographic cluster. In this study, we used the genomes of 242 European dogs, 38 Southeast Asian indigenous (SEAI) dogs, and 41 gray wolves to identify adaptation of European dogs . We report 86 unique positively selected genes in European dogs, among which is LCT (lactase). LCT encodes lactase, which is fundamental for the digestion of lactose. We found that an A-to-G mutation (chr19:38,609,592) is almost fixed in Middle Eastern and European dogs. The results of two-dimensional site frequency spectrum (2D SFS) support that the mutation is under soft sweep . We inferred that the onset of positive selection of the mutation is shorter than 6,535 years and behind the well-developed dairy economy in central Europe. It increases the expression of LCT by reducing its binding with ZEB1, which would enhance dog's ability to digest milk-based diets. Our study uncovers the genetic basis of convergent evolution between humans and dogs with respect to diet, emphasizing the import of the dog as a biomedical model for studying mechanisms of the digestive system.
Assuntos
Lactase , Seleção Genética , Animais , Cães , Frequência do Gene , Humanos , Lactase/genética , Lactase/metabolismo , Lactose/metabolismo , Polimorfismo de Nucleotídeo Único , População BrancaRESUMO
BACKGROUND: Cannabis is an important industrial crop species whose fibre, seeds, flowers and leaves are widely used by humans. The study of cannabinoids extracted from plants has been popular research topic in recent years. China is one of the origins of cannabis and one of the few countries with wild cannabis plants. However, the genetic structure of Chinese cannabis and the degree of adaptive selection remain unclear. RESULTS: The main morphological characteristics of wild cannabis in China were assessed. Based on whole-genome resequencing SNPs, Chinese cannabis could be divided into five groups in terms of geographical source and ecotype: wild accessions growing in the northwestern region; wild accessions growing in the northeastern region; cultivated accessions grown for fibre in the northeastern region; cultivated accessions grown for seed in northwestern region, and cultivated accessions in southwestern region. We further identified genes related to flowering time, seed germination, seed size, embryogenesis, growth, and stress responses selected during the process of cannabis domestication. The expression of flowering-related genes under long-day (LD) and short-day (SD) conditions showed that Chinese cultivated cannabis is adapted to different photoperiods through the regulation of Flowering locus T-like (FT-like) expression. CONCLUSION: This study clarifies the genetic structure of Chinese cannabis and offers valuable genomic resources for cannabis breeding.
Assuntos
Cannabis , Genoma de Planta , Cannabis/genética , Humanos , Fenótipo , Melhoramento Vegetal , Seleção Genética , Análise de Sequência de DNARESUMO
Tibetan frogs, Nanorana parkeri, are differentiated genetically but not morphologically along geographical and elevational gradients in a challenging environment, presenting a unique opportunity to investigate processes leading to speciation. Analyses of whole genomes of 63 frogs reveal population structuring and historical demography, characterized by highly restricted gene flow in a narrow geographic zone lying between matrilines West (W) and East (E). A population found only along a single tributary of the Yalu Zangbu River has the mitogenome only of E, whereas nuclear genes of W comprise 89-95% of the nuclear genome. Selection accounts for 579 broadly scattered, highly divergent regions (HDRs) of the genome, which involve 365 genes. These genes fall into 51 gene ontology (GO) functional classes, 14 of which are likely to be important in driving reproductive isolation. GO enrichment analyses of E reveal many overrepresented functional categories associated with adaptation to high elevations, including blood circulation, response to hypoxia, and UV radiation. Four genes, including DNAJC8 in the brain, TNNC1 and ADORA1 in the heart, and LAMB3 in the lung, differ in levels of expression between low- and high-elevation populations. High-altitude adaptation plays an important role in maintaining and driving continuing divergence and reproductive isolation. Use of total genomes enabled recognition of selection and adaptation in and between populations, as well as documentation of evolution along a stepped cline toward speciation.
Assuntos
Anuros/genética , Anuros/fisiologia , Fluxo Gênico/genética , Especiação Genética , Animais , Hibridização Genética , Metagenômica , Filogenia , Seleção Genética , TibetRESUMO
Natural selection in domestic dogs is of great interest in evolutionary biology since dogs have migrated to every inhabited continent of the world alongside humans, and adapted to diverse environments. Here, we explored their demographic history and genetic basis of adaptation to the tropical African environment using whole genome analyses of 19 African indigenous dogs from Nigeria. Demographic analysis suggests that the ancestors of these dogs migrated into Africa from Eurasia 14,000 years ago and underwent a severe founder effect before population expansion. Admixture analysis further reveals that African dog genomes contain about 1.88-3.50% introgression from African golden wolves (Canis anthus). Population genetic analysis identifies 50 positively selected genes linked with immunity, angiogenesis, ultraviolet protection, as well as insulin secretion and sensitivity that may contribute to adaptation to tropical conditions. One of the positively selected genes, adhesion G protein-coupled receptor E1 (ADGRE1), has also been found to be association with severe malaria resistance in African human populations. Functional assessments showed that ADGRE1 provides protective host defense against Plasmodium infections. This result, together with the fact that the inflammatory response to canine babesiosis is similar to complicated falciparum malaria in humans, support the dogs as a model for the study of malaria control and treatment.
Assuntos
Adaptação Biológica , Evolução Biológica , Cães/genética , Fluxo Gênico , Lobos/genética , África , Animais , Cães/imunologia , Cães/parasitologia , Variação Genética , Plasmodium/imunologia , Seleção Genética , Clima Tropical , Sequenciamento Completo do GenomaRESUMO
The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising â¼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies.
Assuntos
Bases de Dados de Ácidos Nucleicos , Cães/genética , Polimorfismo de Nucleotídeo Único , Lobos/genética , Animais , Genoma , InternetRESUMO
Last decade witnessed the explosive development of the third-generation sequencing strategy, including single-molecule real-time sequencing (SMRT), true single-molecule sequencing (tSMSTM) and the single-molecule nanopore DNA sequencing. In this review, we summarize the principle, performance and application of the SMRT sequencing technology. Compared with the traditional Sanger method and the next-generation sequencing (NGS) technologies, the SMRT approach has several advantages, including long read length, high speed, PCR-free and the capability of direct detection of epigenetic modiï¬cations. However, the disadvantage of its low accuracy, most of which resulted from insertions and deletions, is also notable. So, the raw sequence data need to be corrected before assembly. Up to now, the SMRT is a good fit for applications in the de novo genomic sequencing and the high-quality assemblies of small genomes. In the future, it is expected to play an important role in epigenetics, transcriptomic sequencing, and assemblies of large genomes.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Software , Vírus/genéticaRESUMO
The canine transmissible venereal tumor (CTVT) is a clonal cell-mediated cancer with a long evolutionary history and extensive karyotype rearrangements in its genome. However, little is known about its genetic similarity to human tumors. Here, using multi-omics data we identified 11 germline gene fusions (GGFs) in CTVT, which showed higher genetic susceptibility than others. Additionally, we illustrate a mechanism of a complex gene fusion of three gene segments (HSD17B4-DMXL1-TNFAIP8) that we refer to "greedy fusion". Our findings also provided evidence that expressions of GGFs are downregulated during the tumor regressive phase, which is associated with DNA methylation level. This study presents a comprehensive landscape of gene fusions (GFs) in CTVT, which offers a valuable genetic resource for exploring potential genetic mechanisms underlying the development of cancers in both dogs and humans.
RESUMO
BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
Assuntos
Lobos , Cães , Animais , Lobos/genética , Mapeamento Cromossômico , Alelos , Polimorfismo de Nucleotídeo Único , Nucleotídeos , DemografiaRESUMO
Background: The pathophysiological mechanisms underlying postoperative cognitive dysfunction (POCD) remain unclear over the years. Neuroinflammation caused by surgery has been recognized as an important element in the development of POCD. Many studies also suggest that the vagus nerve plays an important role in transmitting peripheral injury signals to the central nervous system (CNS) and the resultant neuroinflammation. Previously, we have demonstrated that brain mast cells (BMCs), as the "first responders", play a vital role in neuroinflammation and POCD. However, how the vagus nerve communicates with BMCs in POCD has not yet been clarified. Methods: In the current study, we highlighted the role of the vagus nerve as a conduction highway in surgery-induced neuroinflammation for the first time. In our model, we tested if mice underwent unilateral cervical vagotomy (VGX) had less neuroinflammation compared to the shams after laparotomy (LP) at an early stage. To further investigate the roles of mast cells and glutamate in the process, we employed KitW-sh mice and primary bone marrow-derived MCs to verify the glutamate-NR2B axis on MCs once again. Results: Our results demonstrated that there were higher levels of glutamate and BMCs activation as early as 4 h after LP. Meanwhile, vagotomy could partially block the increases and reduce neuroinflammation caused by peripheral inflammation during the acute phase. Excitingly, inhibition of NR2B receptor and knockout of mast cells can attenuateneuroinflammation induced by glutamate. Conclusion: Taken together, our findings indicate that the vagus is a high-speed pathway in the transmission of peripheral inflammation to the CNS. Activation of BMCs triggered a neuroinflammatory cascade. Inhibition of NR2B receptor on BMCs can reduce glutamate-induced BMCs activation, neuroinflammation, and memory impairment, suggesting a novel treatment strategy for POCD.
RESUMO
Obsessive-compulsive disorder (OCD) represents a heterogeneous collection of diseases with diverse levels of phenotypic, genetic, and etiologic variability, making it difficult to identify the underlying genetic and biological mechanisms in humans. Domestic dogs exhibit several OCD-like behaviors. Using continuous circling as a representative phenotype for OCD, we screened two independent dog breeds, the Belgian Malinois and Kunming Dog and subsequently sequenced ten circling dogs and ten unaffected dogs for each breed. Using population differentiation analyses, we identified 11 candidate genes in the extreme tail of the differentiated regions between cases and controls. These genes overlap significantly with genes identified in a genome wide association study (GWAS) of human OCD, indicating strong convergence between humans and dogs. Through gene expressional analysis and functional exploration, we found that two candidate OCD risk genes, PPP2R2B and ADAMTSL3, affected the density and morphology of dendritic spines. Therefore, changes in dendritic spine may underlie some common biological and physiological pathways shared between humans and dogs. Our study revealed an unprecedented level of convergence in OCD shared between humans and dogs, and highlighted the importance of using domestic dogs as a model species for many human diseases including OCD.
RESUMO
The domestic dog has evolved to be an important biomedical model for studies regarding the genetic basis of disease, morphology and behavior. Genetic studies in the dog have relied on a draft reference genome of a purebred female boxer dog named "Tasha" initially published in 2005. Derived from a Sanger whole genome shotgun sequencing approach coupled with limited clone-based sequencing, the initial assembly and subsequent updates have served as the predominant resource for canine genetics for 15 years. While the initial assembly produced a good-quality draft, as with all assemblies produced at the time, it contained gaps, assembly errors and missing sequences, particularly in GC-rich regions, which are found at many promoters and in the first exons of protein-coding genes. Here, we present Dog10K_Boxer_Tasha_1.0, an improved chromosome-level highly contiguous genome assembly of Tasha created with long-read technologies that increases sequence contiguity >100-fold, closes >23,000 gaps of the CanFam3.1 reference assembly and improves gene annotation by identifying >1200 new protein-coding transcripts. The assembly and annotation are available at NCBI under the accession GCF_000002285.5.
Assuntos
Cães/genética , Genoma , Animais , Mapeamento de Sequências Contíguas , Anotação de Sequência MolecularRESUMO
Dingoes are wild canids living in Australia, originating from domestic dogs. They have lived isolated from both the wild and the domestic ancestor, making them a unique model for studying feralization. Here, we sequence the genomes of 10 dingoes and 2 New Guinea Singing Dogs. Phylogenetic and demographic analyses show that dingoes originate from dogs in southern East Asia, which migrated via Island Southeast Asia to reach Australia around 8300 years ago, and subsequently diverged into a genetically distinct population. Selection analysis identifies 50 positively selected genes enriched in digestion and metabolism, indicating a diet change during feralization of dingoes. Thirteen of these genes have shifted allele frequencies compared to dogs but not compared to wolves. Functional assays show that an A-to-G mutation in ARHGEF7 decreases the endogenous expression, suggesting behavioral adaptations related to the transitions in environment. Our results indicate that the feralization of the dingo induced positive selection on genomic regions correlated to neurodevelopment, metabolism and reproduction, in adaptation to a wild environment.
Assuntos
Canidae/classificação , Canidae/genética , Genômica , Filogenia , Migração Animal , Animais , Sudeste Asiático , Austrália , DNA Mitocondrial/análise , Cães/classificação , Cães/genética , Variação Genética , Genética Populacional , Genoma Mitocondrial , Nova Guiné , Polimorfismo de Nucleotídeo Único , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Lobos/classificação , Lobos/genéticaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.
Assuntos
Galinhas/genética , Genoma , Filogenia , Distribuição Animal , Animais , Animais Domésticos/genética , Ásia , Domesticação , Pool Gênico , Geografia , Funções Verossimilhança , Aves Domésticas/genética , Seleção GenéticaRESUMO
Several processes like phenotypic evolution, disease susceptibility and environmental adaptations, which fashion the domestication of animals, are largely attributable to structural variations (SVs) in the genome. Here, we present high-quality draft genomes of the gray wolf (Canis lupus) and dhole (Cuon alpinus) with scaffold N50 of 6.04 Mb and 3.96 Mb, respectively. Sequence alignment comprising genomes of three canid species reveals SVs specific to the dog, particularly 16 315 insertions, 2565 deletions, 443 repeats, 16 inversions and 15 translocations. Functional annotation of the dog SVs associated with genes indicates their enrichments in energy metabolisms, neurological processes and immune systems. Interestingly, we identify and verify at population level an insertion fully covering a copy of the AKR1B1 (Aldo-Keto Reductase Family 1 Member B) transcript. Transcriptome analysis reveals a high level of expression of the new AKR1B1 copy in the small intestine and liver, implying an increase in de novo fatty acid synthesis and antioxidant ability in dog compared to gray wolf, likely in response to dietary shifts during the agricultural revolution. For the first time, we report a comprehensive analysis of the evolutionary dynamics of SVs during the domestication step of dogs. Our findings demonstrate that retroposition can birth new genes to facilitate domestication, and affirm the importance of large-scale genomic variants in domestication studies.
RESUMO
The evolutionary history of the wolf-like canids of the genus Canis has been heavily debated, especially regarding the number of distinct species and their relationships at the population and species level [1-6]. We assembled a dataset of 48 resequenced genomes spanning all members of the genus Canis except the black-backed and side-striped jackals, encompassing the global diversity of seven extant canid lineages. This includes eight new genomes, including the first resequenced Ethiopian wolf (Canis simensis), one dhole (Cuon alpinus), two East African hunting dogs (Lycaon pictus), two Eurasian golden jackals (Canis aureus), and two Middle Eastern gray wolves (Canis lupus). The relationships between the Ethiopian wolf, African golden wolf, and golden jackal were resolved. We highlight the role of interspecific hybridization in the evolution of this charismatic group. Specifically, we find gene flow between the ancestors of the dhole and African hunting dog and admixture between the gray wolf, coyote (Canis latrans), golden jackal, and African golden wolf. Additionally, we report gene flow from gray and Ethiopian wolves to the African golden wolf, suggesting that the African golden wolf originated through hybridization between these species. Finally, we hypothesize that coyotes and gray wolves carry genetic material derived from a "ghost" basal canid lineage.
Assuntos
Evolução Biológica , Canidae/genética , Fluxo Gênico , Hibridização Genética , Filogenia , AnimaisRESUMO
Database URL: http://www.ibiomedical.net/pigvar/.