Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 119(2): 676-688, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683723

RESUMO

Stomatal immunity plays an important role during bacterial pathogen invasion. Abscisic acid (ABA) induces plants to close their stomata and halt pathogen invasion, but many bacterial pathogens secrete phytotoxin coronatine (COR) to antagonize ABA signaling and reopen the stomata to promote infection at early stage of invasion. However, the underlining mechanism is not clear. SAD2 is an importin ß family protein, and the sad2 mutant shows hypersensitivity to ABA. We discovered ABI1, which negatively regulated ABA signaling and reduced plant sensitivity to ABA, was accumulated in the plant nucleus after COR treatment. This event required SAD2 to import ABI1 to the plant nucleus. Abolition of SAD2 undermined ABI1 accumulation. Our study answers the long-standing question of how bacterial COR antagonizes ABA signaling and reopens plant stomata during pathogen invasion.


Assuntos
Ácido Abscísico , Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Indenos , Estômatos de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estômatos de Plantas/fisiologia , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácido Abscísico/metabolismo , Indenos/metabolismo , Indenos/farmacologia , Aminoácidos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Núcleo Celular/metabolismo , Fosfoproteínas Fosfatases
2.
J Comput Chem ; 45(19): 1630-1641, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38539259

RESUMO

The synergistic regulation of the multi-functional sites on one receptor molecule with different cationic effectors for anion recognition is scarce to be well understood from the experiment and theory. In this work, a new anion receptor with three functional zones including ether hole, biurea and double bipyridine groups (EUPR) is designed expecting to enhance the chloride anion recognition together with a rational synthesis path being proposed based on four simple and mature organic reaction steps. The conformational structures of the designed receptor EUPR and the binding behaviors for three kinds of ions (Cl-, Na+, and Ag+) are deeply investigated by using density functional theoretical calculations. It is found that Cl- binding via the hydrogen bond interaction can be significantly enhanced and synergistically regulated by the two kinds of cations and the corresponding conformational changes of receptor EUPR. Especially, the conformational pre-organization of receptor caused by the encapsulation of sodium ion into ether hole is benefit to the binding for Cl- in both thermodynamics and kinetics. Na+ binding, in turn, can ever be enhanced by chloride anion, whereas it seems that Ag+ binding cannot always be enhanced by chloride anion, reflecting an electrical complementary matching and mutual enhancement effect for different counter ions. Moreover, solvent effect calculations indicate that EUPR may be an ideal candidate structure for Cl- recognition by strategy of counter ion enhancement in water. Additionally, a visual study of intermolecular noncovalent interaction (NCI) and molecular electrostatic potential (ESP) are used for the analysis on the nature of interactions between receptor and bound ions.

3.
J Org Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953569

RESUMO

α-Quaternary amino acids have found application in many biologically relevant compounds and pharmaceuticals. Although there are many methods for the synthesis of α-quaternary amino acids, most of them are mainly realized with the aid of transition metals and complex ligands. We present herein a 2,7-Br-4CzIPN catalyzed regioselective alkylation of azlactones with redox-active esters via radical-radical couplings. Strikingly, this approach is devoid of any metal or additive and shows broad scope and superior sensitive functional group compatibility.

4.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007389

RESUMO

The mutual synergistic regulation of the multi-functional sites on a single receptor molecule for ion-binding/recognition is vital for the new receptor design and needs to be well explored from experiment and theory. In this work, a new macrocyclic ion receptor (BEBUR) with three functional zones, including two ether holes and one biurea groups, is designed expecting to mutually enhance the ion-binding performance. The binding behaviors of BEBUR mainly for Cl- and Cs+ are deeply investigated by using density functional theoretical calculations. It is found that Cl-/Cs+ binding can be mutually enhanced and synergistically regulated via corresponding conformational changes of the receptor, well reflecting an electrical complementary matching and mutual reinforcement effect. Moreover, solvent effect calculations indicate that BEBUR may be an excellent candidate structure for Cl--binding with the enhancement of counter ion (Cs+) in water and toluene. In addition, visualization of intermolecular noncovalent interaction is used for analysis on the nature of the binding interactions between receptor and ions.

5.
J Org Chem ; 88(17): 12257-12264, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579280

RESUMO

A transition-metal-free hydrosilylation of allenes is reported herein by using commercially available lithium triethylborohydride (LiHBEt3) as the catalyst. Both mono- and disubstituted allenes could be hydrosilylated with primary or secondary silanes effectively. This reaction represents an environmental and economic method to prepare (E)-allylsilanes in good yields along with decent selectivities.

6.
Inorg Chem ; 62(23): 8993-9004, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37262348

RESUMO

A new carbonaceous nanohoop, [4]cyclopara-1,2-diphenylethylene ([4]CPDPE, composed by four 1,2-diphenylethylene units linked via the para of the phenyls), is designed together with two rational synthesis paths being proposed. The Saturn-like host-guest systems formed with the [4]CPDPE nanoring and fullerene C60/70 are explored using density functional theory calculations. The results evidence that the geometry mutual matching between [4]CPDPE and C60/70 is perfect, and the [4]CPDPE⊃C60/70 complexes could be formed spontaneously with high binding energies. Thermodynamic calculation results show that it essentially prefers to selectively recognize C70 over its smaller cousin C60. More interestingly, the [4]CPDPE nanoring could present the regular ring cylinder and the saddle shapes via configuration transformation between its all-trans form and all-cis form, so as to theoretically realize the fullerene encapsulation and release under photoirradiation. Furthermore, the 2:1 interaction structure ([4]CPDPE2⊃Dimer-C60) and properties are investigated. Additionally, the ultraviolet-visible (UV-vis) spectra are simulated, and host-guest noncovalent interaction (NCI) regions are investigated based on the electron density and reduced density gradient (RDG), which may be helpful for a deep understanding of the present designed systems in future.

7.
Phys Chem Chem Phys ; 25(7): 5743-5757, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36744403

RESUMO

Developing π electron conjugated groups as covalent bonded bridges between fullerenes in their oligomers is key to optimizing and maximizing functions of the fullerene-based materials. In this work, a series of novel conjugated chain bonded fullerene C60 oligomers (CBFOs) with a well-defined nano-architecture and "grape bunches" shapes are rationally designed and viably constructed based on fullerene-carbenes by means of DFT calculations. The results show that the presently designed CBFOs present a much better electron-accepting ability together with a much lower reorganization energy than the isolated fullerene C60, and characterized as the potential ideal candidate for electron acceptors. The frontier molecular orbital and electron density analysis can well support the results of diabatic electron affinity (EAa) and vertical electron affinity (EAv) calculations. Moreover, these CBFOs exhibit strong absorption in the visible region but no obvious absorption in the ultraviolet region. In addition, the optical properties of the CBFOs and two dimensional structure are also simulated and explored theoretically. We hope that the present study would be helpful for developing covalent-bonded-fullerene based electron trap molecular materials, building blocks of nano-devices and nano-machinery applications.

8.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615559

RESUMO

Flavonoids are a group of natural polyphenolic substances that are abundant in vegetables, fruits, grains, and tea. Chiral A-ring-containing flavonoids are an important group of natural flavonoid derivatives applicable in a wide range of biological activities such as, cytotoxic, anti-inflammatory, anti-microbial, antioxidant, and enzyme inhibition. The desirable development of chiral A-ring-containing flavonoids by isolation, semi-synthesis or total synthesis in a short duration proves their great value in medicinal chemistry research. In this review, the research progress of chiral A-ring-containing flavonoids, including isolation and extraction, structural identification, pharmacological activities, and synthetic methods, is comprehensively and systematically summarized. Furthermore, we provide suggestions for future research on the synthesis and biomedical applications of flavonoids.


Assuntos
Antineoplásicos , Flavonoides , Flavonoides/química , Antineoplásicos/química , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química
9.
J Comput Chem ; 43(19): 1276-1285, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644831

RESUMO

By means of density functional theory calculations, the encapsulation capabilities of a series of azobenzen-containing photoresponsive nanoring hosts (labeled as host 1, 2, 3, 4, 5 and 6 according to the number of the azo unit, respectively) for fullerene C60 were surveyed. Interestingly and abnormally, it is found that the host 5, of which the diameter is only 1.218 nm, can form stable full inclusion complex with C60 . However, irrespective of their cavity sizes (11.98 ~ 12.94 Å) of the hosts, the structures 1 ~ 4 and 6 were all disable to form inclusion complex with C60 . In this paper, the group-number-composition-selective full inclusion host-guest interaction of the azobenzene-containing nanorings with fullerene C60 is firstly presented. The calculated interaction energies, together with the detection and visualization of the weak interaction regions, provided evidences for the host-guest binding based on relative strong repulsion interaction in the full inclusion complex. Analysis on the frontier orbital feature of the host-guest systems suggests that under the electron excited condition, the chemical activity may be transferred from host 5 to guest C60 by formation of the floating host-guest complex, and the chemical reactivity of the host 5 can be passivated via formation of the full inclusion host-guest complex. Additionally, UV-vis-NIR and 1 H NMR spectra of the hosts before and after the formations of the complexes have been simulated and discussed qualitatively, which may be helpful for further experimental investigations in future.

10.
Org Biomol Chem ; 20(25): 5055-5059, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35695281

RESUMO

Herein, we report a Rh(III)-catalyzed C4-selective activation of indoles by using iodonium ylides as carbene precursors. This protocol proceeded under redox neutral reaction conditions and provided important coupling products with good tolerance of functional groups and high yields. In addition, one-pot synthesis and scale-up and mechanistic studies were also conducted.


Assuntos
Ródio , Catálise , Indóis , Oxirredução
11.
Xenobiotica ; 52(4): 353-359, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35621148

RESUMO

This study aimed to assess the effects of total flavonoid extracts (TFDG) and the monomers of Daphne genkwa on the CYP2C8 activity in vitro and in vivo.The 50% inhibitory concentration (IC50) values were used to determine the inhibitory effect of TFDG and its four monomers for the CYP2C8 activity by recombinant human CYP2C8 (RHCYP2C8) yeast microsome system in vitro, and the volume per dose index (VDI) was predicted the potential inhibition in vivo. The effects of multiple-dose administration of TFDG on the pharmacokinetic parameters of rosiglitazone in rats were evaluated.The IC50 values of apigenin, luteolin, hydroxy-genkwanin, genkwanin, and TFDG were 7.27 µmol/L, 11.9 µmol/L, 28.1 µmol/L, 127 µmol/L, and 13.4 µg/mL, respectively. The VDI values of apigenin and TFDG were 2.15 L and 6.60 L. In vivo study, compared with the control group, the elimination phase half-life and mean residence time in the TFDG treatment group were significantly increased by 96.9% and 106.8% (p <.05), respectively.Apigenin showed a moderate inhibitory effect on the CYP2C8 activity in vitro, while the other three monomers were weak inhibitors. TFDG had a strong inhibitory effect on CYP2C8 in vitro and in vivo, and also inhibited the metabolism of rosiglitazone in rats.


Assuntos
Daphne , Animais , Apigenina/farmacologia , Citocromo P-450 CYP2C8 , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Ratos , Rosiglitazona/farmacologia
12.
J Cell Mol Med ; 25(16): 8015-8027, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155807

RESUMO

Procyanidin B2 (PB2), a naturally occurring flavonoid abundant in a wide range of fruits, has been shown to exert antioxidant, anti-inflammatory and anticancer properties. However, the role of PB2 in the prevention of cold stimulation (CS)-induced liver injury. The present study was undertaken to determine the effects of PB2 on liver injury induced by cold stimulation and its potential molecular mechanisms. The present study results showed that treatment with PB2 significantly reduced CS-induced liver injury by alleviating histopathological changes and serum levels of alanine transaminase and aspartate transaminase. Moreover, treatment with PB2 inhibited secretion of inflammatory cytokines and oxidative stress in cold-stimulated mice. PB2 reduced cold stimulation-induced inflammation by inhibiting TLR4/NF-κB and Txnip/NLRP3 signalling. Treatment with PB2 reduced oxidative stress by activating Nrf-2/Keap1, AMPK/GSK3ß signalling pathways and autophagy. Furthermore, simultaneous application of Shh pathway inhibitor cyclopamine proved that PB2 targets the Hh pathway. More importantly, co-treatment with PB2 and cyclopamine showed better efficacy than monotherapy. In conclusion, our findings provide new evidence that PB2 has protective potential against CS-induced liver injury, which might be closely linked to the inhibition of Shh signalling pathway.


Assuntos
Autofagia , Biflavonoides/farmacologia , Catequina/farmacologia , Temperatura Baixa , Proteínas Hedgehog/metabolismo , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proantocianidinas/farmacologia , Animais , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
J Org Chem ; 86(23): 17063-17070, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34797073

RESUMO

A tandem rhodium(III)-catalyzed system was established to access 3,4-dihydroisoquinolin-1(2H)-one by coupling of N-methoxy-3-methylbenzamide with 2-methylidenetrimethylene carbonate. This one-pot synthesis protocol processed smoothly under mild reaction conditions. Moreover, a total of 28 examples, broad substrate scope, and high functional-group compatibility were observed. Preliminary mechanism studies were also conducted and demonstrated that the rhodium(III) catalyst played a vital role in the C-H-allylation and N-alkylation cyclization process.


Assuntos
Ródio , Alquilação , Carbonatos , Catálise , Ciclização
14.
Clin Exp Hypertens ; 43(1): 91-100, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909857

RESUMO

Vitamin D modulates about 3% human gene transcription besides the classical action on calcium/phosphorus homeostasis. The blood pressure-lowing and other protective action on cardiovascular disease have been reported. The present study aims to examine whether COX-1 and COX-2 were implicated in endothelial dysfunction in hypertension and calcitriol, an active form of vitamin D preserved endothelial function through regulating COX expression. Isometric study demonstrated the impaired endothelium-dependent relaxation (EDR) in renal arteries from spontaneously hypertensive rats were reversed by 12 h-calcitriol treatment and COX-1 and COX-2 inhibitors. Combined uses of COX-1 and COX-2 inhibitor induced more improved relaxations. Exaggerated expressions of COX-1 and COX-2 in renal artery from SHR were inhibited by 12 h-administration of calcitriol, NADPH oxidase inhibitor DPI, or reactive oxygen species (ROS) scavenger tempol. Furthermore, in normotensive WKY rats, calcitriol prevents against the blunted EDR in renal arteries by 12 h-Ang II exposure, with similar improvements by COX-1 and COX-2 inhibitors. Accordingly, increased COX-1 and COX-2 expressions by Ang II exposure were corrected by losartan, DPI, or tempol. Studies on human renal artery also revealed the beneficial action of calcitriol is mediated by suppressing COX-1 and COX-2 expressions, dependent on vitamin D receptor (VDR) activation. Taken together, our findings showed that COX-1 and COX-2 are positively involved in the renovascular dysfunction in hypertension and via VDR, calcitriol benefits renovasular function by suppressing COX-1 and COX-2 expressions. Furthermore, ROS is involved in the COX-1 and COX-2 up-regulations of renal arteries, maybe serving as a mediator in the inhibitory action of calcitriol on COX expression.


Assuntos
Calcitriol/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Hipertensão/enzimologia , Artéria Renal/enzimologia , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Losartan/farmacologia , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Receptores de Calcitriol/metabolismo , Marcadores de Spin , Vasodilatação/efeitos dos fármacos
15.
BMC Evol Biol ; 19(1): 157, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351448

RESUMO

BACKGROUND: Cetaceans exhibit an exceptionally wide range of body size, yet in this regard, their genetic basis remains poorly explored. In this study, 20 body-size-related genes for which duplication, mutation, or deficiency can cause body size change in mammals were chosen to preliminarily investigate the evolutionary mechanisms underlying the dramatic body size variation in cetaceans. RESULTS: We successfully sequenced 20 body-size-related genes in six representative species of cetaceans. A total of 46 codons from 10 genes were detected and determined to be under strong positive selection, 32 (69.6%) of which were further found to be under radical physiochemical changes; moreover, some of these sites were localized in or near important functional regions. Interestingly, positively selected genes were well matched with body size evolution: for small cetaceans, strong evidence of positive selection was detected at ACAN, OBSL1, and GRB10, within which mutations or duplications could cause short stature; positive selection was found in large cetaceans at CBS and EIF2AK3, which could promote growth, and at the PLOD1 gene, within which mutations could cause tall stature. Importantly, relationship analyses revealed that the evolutionary rate of CBS was positively related to body length and body mass with statistical significance. Additionally, we identified 32 cetacean-specific amino acid changes in 10 genes. CONCLUSIONS: This is the first study to investigate the molecular basis of dramatic body size variation in cetaceans. Our results provide evidence of the positive selection of several body-size-related genes in cetaceans, as well as divergent selection between large or small cetaceans, which suggest cetacean body size variation possibly associated with these genes. In addition, cetacean-specific amino acid changes might have played key roles in body size evolution after the divergence of cetaceans from their terrestrial relatives. Overall, the evolutionary pattern of these body-size-related genes could provide new insights into genetic mechanisms for the body size variation in cetaceans.


Assuntos
Tamanho Corporal/genética , Cetáceos/genética , Evolução Molecular , Animais , Filogenia , Análise de Regressão , Seleção Genética , Especificidade da Espécie
16.
Bioorg Med Chem Lett ; 29(4): 525-528, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30630716

RESUMO

The xanthine oxidase (XO) plays an important role in producing uric acid, and therefore XO inhibitors are considered as one of the promising therapies for hyperuricemia and gout. We have previously reported a series of XO inhibitors with pyrazole scaffold to extend the chemical space of current XO inhibitors. Herein, we describe further structural optimization to explore the optimal heterocycle by replacing the thiazole ring of Febuxostat with 5 heterocycle scaffolds unexplored in this field. All of these efforts resulted in the identification of compound 8, a potent XO inhibitor (IC50 = 48.6 nM) with novel 2-phenylthiazole-4-carboxylic acid scaffold. Moreover, lead compound 8 exhibited hypouricemic effect in potassium oxonate-hypoxanthine-induced hyperuricemic mice. These results promote the understanding of ligand-receptor interaction and might help to design more promising XO inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Tiazolidinas/farmacologia , Xantina Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/química , Febuxostat/farmacologia , Tiazolidinas/química
17.
Mol Pharm ; 15(8): 3456-3467, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29966420

RESUMO

While highly efficacious in treating rheumatoid arthritis (RA), the approved Janus kinase (JAK) inhibitor, Tofacitinib (Tofa, CP-690 550), has dose-dependent toxicities that limit its clinical application. In this study, we have examined whether a prodrug design that targets arthritic joints would enhance Tofa's therapeutic efficacy, which may provide an opportunity for future development of safer Tofa dosing regimens. A prodrug of Tofa (P-Tofa) was synthesized by conjugating the drug to the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer via an acid cleavable carbamate linker. The therapeutic efficacy of a single dose of P-Tofa was compared to the dose-equivalent daily oral administration of Tofa in an adjuvant-induced arthritis (AA) rat model. Saline treated AA rats and age-matched healthy rats were used as controls. Observational analyses support the superior and sustained efficacy of a single dose P-Tofa treatment compared to the dose-equivalent daily Tofa administration in ameliorating joint inflammation. Micro-CT and histological analyses demonstrated that the P-Tofa treatment provided a structural preservation of the joints better than that of the dose-equivalent Tofa. Optical imaging, immunohistochemistry, and fluorescence-activated cell sorting analyses attribute P-Tofa's superior therapeutic efficacy to its passive targeting to arthritic joints and inflammatory cell-mediated sequestration. In vitro cell culture studies reveal that the P-Tofa treatment produced sustained the inhibition of JAK/STAT6 signaling in IL-4-treated murine bone marrow macrophages, consistent with a gradual subcellular release of Tofa. Collectively, a HPMA-based nanoscale prodrug of P-Tofa has the potential to enhance the therapeutic efficacy and widen the therapeutic window of Tofa therapy in RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Piperidinas/uso terapêutico , Pró-Fármacos/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Acrilamidas/química , Administração Oral , Animais , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/efeitos dos fármacos , Articulação do Tornozelo/patologia , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/etiologia , Artrite Experimental/patologia , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Células Cultivadas , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Piperidinas/química , Piperidinas/farmacologia , Cultura Primária de Células , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Ratos , Ratos Endogâmicos Lew , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Distribuição Tecidual , Resultado do Tratamento , Microtomografia por Raio-X
18.
Bioorg Chem ; 80: 296-302, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980115

RESUMO

The free fatty acid receptor 1 (FFA1) enhances the glucose-stimulated insulin secretion without the risk of hypoglycemia. However, most of FFA1 agonists have a common biphenyl moiety, leading to a relative deprivation in structure types. Herein, we describe the exploration of non-biphenyl scaffold based on the co-crystal structure of FFA1 to increase additional interactions with the lateral residues, which led to the identification of lead compounds 3 and 9. In induced-fit docking study, compound 3 forms an edge-on interaction with Trp150 by slightly rotating the indole ring of Trp150, and compound 9 has additional hydrogen bond and δ-π interactions with Leu135, which demonstrated the feasibility of our design strategy. Moreover, lead compounds 3 and 9 revealed improved polar surface area compared to GW9508, and have considerable hypoglycemic effects in mice. This structure-based study might inspire us to design more promising FFA1 agonists by increasing additional interactions with the residues outside of binding pocket.


Assuntos
Desenho de Fármacos , Hipoglicemiantes/química , Receptores Acoplados a Proteínas G/agonistas , Animais , Sítios de Ligação , Compostos de Bifenilo/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/veterinária , Teste de Tolerância a Glucose , Humanos , Ligação de Hidrogênio , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Metilaminas/farmacologia , Metilaminas/uso terapêutico , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Propionatos/farmacologia , Propionatos/uso terapêutico , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
19.
Nanomedicine ; 14(7): 2271-2282, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076934

RESUMO

Delayed fracture union is a significant clinical challenge in orthopedic practice. There are few non-surgical therapeutic options for this pathology. To address this challenge, we have developed a bone-targeting liposome (BTL) formulation of salvianic acid A (SAA), a potent bone anabolic agent, for improved treatment of delayed fracture union. Using pyrophosphorylated cholesterol as the targeting ligand, the liposome formulation (SAA-BTL) has demonstrated strong affinity to hydroxyapatite in vitro, and to bones in vivo. Locally administered SAA-BTL was found to significantly improve fracture callus formation and micro-architecture with accelerated mineralization rate in callus when compared to the dose equivalent SAA, non-targeting SAA liposome (SAA-NTL) or no treatment on a prednisone-induced delayed fracture union mouse model. Biomechanical analyses further validated the potent therapeutic efficacy of SAA-BTL. These results support SAA-BTL formulation, as a promising therapeutic candidate, to be further developed into an effective and safe clinical treatment for delayed bone fracture union.


Assuntos
Ácidos Cafeicos/farmacologia , Consolidação da Fratura/efeitos dos fármacos , Fraturas Ósseas/tratamento farmacológico , Lactatos/farmacologia , Lipossomos/administração & dosagem , Osteogênese , Inibidores da Bomba de Prótons/farmacologia , Animais , Anti-Inflamatórios/toxicidade , Ácidos Cafeicos/química , Colesterol/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Feminino , Fraturas Ósseas/induzido quimicamente , Lactatos/química , Lipossomos/química , Camundongos , Prednisona/toxicidade , Inibidores da Bomba de Prótons/química
20.
J Comput Chem ; 38(10): 730-739, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28164347

RESUMO

Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA