Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Environ Sci (China) ; 146: 149-162, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969443

RESUMO

Industrial wastewater should be treated with caution due to its potential environmental risks. In this study, a polymerization-based cathode/Fe3+/peroxydisulfate (PDS) process was employed for the first time to treat a raw coking wastewater, which can achieve simultaneous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers. The results confirm that several dominant organic contaminants in coking wastewater such as phenol, cresols, quinoline and indole can be induced to polymerize by self-coupling or cross-coupling. The total chemical oxygen demand (COD) abatement from coking wastewater is 46.8% and the separable organic-polymer formed from organic contaminants accounts for 62.8% of the abated COD. Dissolved organic carbon (DOC) abatement of 41.9% is achieved with about 89% less PDS consumption than conventional degradation-based process. Operating conditions such as PDS concentration, Fe3+ concentration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals. ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl-, Br-, I-, NH4+, SCN- and CN-, suggesting that these inorganic ions may be involved in the polymerization. The specific consumption of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC. The values are much lower than those of the degradation-based processes in treating the same coking wastewater, and also are lower than those of most processes previously reported for coking wastewater treatment.


Assuntos
Coque , Polimerização , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Sulfatos/química , Polímeros/química , Análise da Demanda Biológica de Oxigênio , Técnicas Eletroquímicas/métodos
2.
Environ Sci Technol ; 57(47): 18575-18585, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36642924

RESUMO

A novel approach to the abatement of pollutants consisting of their conversion to separable solid polymers is explored by a heat/persulfate (PDS) process for the treatment of high-temperature wastewaters. During this process, a simultaneous decontamination and carbon recovery can be achieved with minimal use of PDS, which is significantly different from conventional degradation processes. The feasibility of this process is demonstrated by eight kinds of typical organic pollutants and by a real coking wastewater. For the treatment of the selected pollutants, 30.2-91.9% DOC abatement was achieved with 24.8-91.2% carbon recovery; meanwhile, only 5.2-47.0% of PDS was consumed compared to a conventional degradation process. For the treatment of a real coking wastewater, 71.0% DOC abatement was achieved with 66.0% carbon recovery. With phenol as a representative compound, our polymerization-based heat/PDS process is applicable in a wide pH range (3.5-9.0) with a carbon recovery of >87%. Both SO4•- and HO• can be initiators for polymerization, with different contribution ratios under various conditions. Phenol monomers are semioxidized to form phenolic radicals, which are polymerized via chain transfer or chain growth processes to form separable solid phenol polymers, benzenediol polymers, and cross-linked polymers.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Temperatura Alta , Polimerização , Poluentes Químicos da Água/análise , Oxirredução , Carbono , Fenol/química , Polímeros
3.
J Cell Physiol ; 235(10): 7003-7017, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037547

RESUMO

Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide. HCC has traits of late diagnosis and high recurrence. This study explored potential diagnosis and prognosis significance of phospholipase C epsilon 1 (PLCE1) in HCC. The messenger RNA (mRNA) levels and diagnostic value of PLCE1 were determined by real-time polymerase chain reaction and online databases GEPIA, oncomine, and GSE14520 data set. Survival analysis used the Kaplan-Meier Plotter website. Cell cycle, proliferation, migration, and invasion assays were performed with downregulated PLCE1 expression in HCC-M and HepG2 cell lines. PLCE1 was differentially expressed and highly expressed in tumors and had low expression in nontumor tissues (all p < .05). The diagnostic value of PLCE1 was validated with the datasets (all p < .01, all areas under curves > 0.7). PLCE1 mRNA expression was associated with the overall and relapse-free survival (both p < .05). Functional experiments indicated that downregulation of PLCE1 expression led to increased G1 stage in cell cycle and decreased cell proliferation, migration, and invasion compared with a negative control group (all p ≤ .05). The oncogene PLCE1 was differentially expressed in HCC and non-HCC tissues. It is a candidate for diagnosis and serves as prognosis biomarker. PLCE1 influenced survival by affecting the cell cycle, proliferation, migration, and invasion ability.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Ciclo Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Hepáticas/genética , Oncogenes/genética , Fosfoinositídeo Fosfolipase C/genética , Adulto , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Recidiva Local de Neoplasia/genética , Prognóstico , RNA Mensageiro/genética
4.
BMC Gastroenterol ; 20(1): 415, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302876

RESUMO

BACKGROUND: This study explored the prognostic significance of Glypican (GPC) family genes in patients with pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). METHODS: A total of 112 PDAC patients from TCGA and 48 patients from GEO were included in the analysis. The relationship between overall survival and the expression of GPC family genes as well as basic clinical characteristics was analyzed using the Kaplan-Meier method with the log-rank test. Joint effects survival analysis was performed to further examine the relationship between GPC genes and prognosis. A prognosis nomogram was established based on clinical characteristics and prognosis-related genes. Prognosis-related genes were investigated by genome-wide co-expression analysis and gene set enrichment analysis (GSEA) was carried out to identify potential mechanisms of these genes affecting prognosis. RESULTS: In TCGA database, high expression of GPC2, GPC3, and GPC5 was significantly associated with favorable survival (log-rank P = 0.031, 0.021, and 0.028, respectively; adjusted P value = 0.005, 0.022, and 0.020, respectively), and joint effects analysis of these genes was effective for prognosis prediction. The prognosis nomogram was applied to predict the survival probability using the total scores calculated. Genome-wide co-expression and GSEA analysis suggested that the GPC2 may affect prognosis through sequence-specific DNA binding, protein transport, cell differentiation and oncogenic signatures (KRAS, RAF, STK33, and VEGFA). GPC3 may be related to cell adhesion, angiogenesis, inflammatory response, signaling pathways like Ras, Rap1, PI3K-Akt, chemokine, GPCR, and signatures like cyclin D1, p53, PTEN. GPC5 may be involved in transcription factor complex, TFRC1, oncogenic signatures (HOXA9 and BMI1), gene methylation, phospholipid metabolic process, glycerophospholipid metabolism, cell cycle, and EGFR pathway. CONCLUSION: GPC2, GPC3, and GPC5 expression may serve as prognostic indicators in PDAC, and combination of these genes showed a higher efficiency for prognosis prediction.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirurgia , Glipicanas/genética , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia , Fosfatidilinositol 3-Quinases , Prognóstico
5.
Environ Sci Technol ; 49(3): 1698-705, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25611970

RESUMO

Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 µM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 µg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations.


Assuntos
Peróxido de Hidrogênio/química , Ácido Peracético/química , Águas Salinas/química , Purificação da Água/métodos , Bromatos/química , Brometos/química , Cloretos/química , Desinfecção/métodos , Halogenação , Iodetos/química , Oxidantes/química , Oxirredução , Trialometanos/química , Poluentes Químicos da Água/química
6.
Heliyon ; 10(1): e23774, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192839

RESUMO

New infrastructure construction stemming from the new waves of technological revolution worldwide is exemplified by 5G base stations, big data centers, and ultra-high voltage. It has aroused extensive academic and policy interests in recent years, especially due to its beneficial role in empowering regional novel economic dynamics. However, this argument is still too general to capture the nuanced effects of new infrastructure construction on fostering emerging industries in specific spatial-temporal and industrial contexts, which is left for geographers to take up. This paper focuses on the spatial-temporally and industrially heterogeneous effects of new infrastructure construction on fostering four distinctive emerging industries in major Chinese cities over the last decade. It reveals that new infrastructure construction and emerging industries have experienced rapid development in major Chinese cities, with geographical agglomeration in national central cities with advanced economic development level. It is empirically demonstrated that new infrastructure construction can facilitate the development of emerging industries in major Chinese cities, while significant spatial-temporal heterogeneity characterizes the contributory forces. Furthermore, artificial intelligence as a Key Enabling Technology, robotics as a kind of hardware-featured industry, software-as-a-service as a software-centered industry, and blockchain as a networking-oriented industry vary markedly in the extent and the ways in which they benefit from new infrastructure construction, and they consequently exhibit industrial sensitivity to spatial-temporal heterogeneity in the fostering effects.

7.
J Hazard Mater ; 472: 134498, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733782

RESUMO

Advanced oxidation processes for the treatment of organic pollutants in wastewater suffer from difficulties in mineralization, potential risks of dissolved residues, and high oxidant consumption. In this study, radical-initiated polymerization is dominated in an UV/peroxydisulfate (PDS) process to eliminate organic pollutant of pharmaceutical metoprolol (MTP). Compared with an ideal degradation-based UV/PDS process, the present process can save four fifths of PDS consumption at the same dissolved organic carbon removal of 47.3%. Simultaneously, organic carbon can be recovered from aqueous solution by separating solid polymers at a ratio of 50% of the initial chemical oxygen demand. The chemical structure of products was analyzed to infer the transformation pathways of MTP. Unlike previous studies on simple organic pollutants that the polymerization can occur independently, the polymerization of MTP is dependent on the partial degradation of MTP, and the main monomer in polymerization is a dominant degradation product (4-(2-methoxyethyl)-phenol, denoted as DP151). The separated solid polymers are formed by repeated oxidation and coupling of DP151 or its derivatives through a series of intermediate oligomers. This proof-of-concept study demonstrates the advantage of polymerization-dominated mechanism on dealing with large organic molecules with complex structures, as well as the potential of UV/PDS process for simultaneous organic pollution reduction and organic carbon recovery from aqueous solution.

8.
J Hazard Mater ; 471: 134363, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663291

RESUMO

Degradation of organics in high-salinity wastewater is beneficial to meeting the requirement of zero liquid discharge for coking wastewater treatment. Creating efficient and stable performance catalysts for high-salinity wastewater treatment is vital in catalytic ozonation process. Compared with ozonation alone, Mn and Ce co-doped γ-Al2O3 could remarkably enhance activities of catalytic ozonation for chemical oxygen demand (COD) removal (38.9%) of brine derived from a two-stage reverse osmosis treatment. Experimental and theoretical calculation results indicate that introducing Mn could increase the active points of catalyst surface, and introducing Ce could optimize d-band electronic structures and promote the electron transport capacity, enhancing HO• bound to the catalyst surface ([HO•]ads) generation. [HO•]ads plays key roles for degrading the intermediates and transfer them into low molecular weight organics, and further decrease COD, molecular weights and number of organics in reverse osmosis concentrate. Under the same reaction conditions, the presence of Mn/γ-Al2O3 catalyst can reduce ΔO3/ΔCOD by at least 37.6% compared to ozonation alone. Furthermore, Mn-Ce/γ-Al2O3 catalytic ozonation can reduce the ΔO3/ΔCOD from 2.6 of Mn/γ-Al2O3 catalytic ozonation to 0.9 in the case of achieving similar COD removal. Catalytic ozonation has the potential to treat reverse osmosis concentrate derived from bio-treated coking wastewater reclamation.

9.
J Hazard Mater ; 446: 130658, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36580777

RESUMO

Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48-79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers.

10.
Sci Total Environ ; 876: 162798, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36914136

RESUMO

Electrochemical process coupling with ultraviolet light-emitting diode for micropollutant abatement was evaluated in the treatment of wastewater containing Cl-. Four representative micropollutants, atrazine, primidone, ibuprofen and carbamazepine, were selected as target compounds. The impacts of operating conditions and water matrix on micropollutant degradation were investigated. Fluorescence excitation-emission matrix spectroscopy spectra and high performance size exclusion chromatography were employed to characterize the transformation of effluent organic matter in treatment. The degradation efficiencies of atrazine, primidone, ibuprofen and carbamazepine are 83.6 %, 80.6 %, 68.7 % and 99.8 % after 15 min treatment, respectively. The increment of current, Cl- concentration and ultraviolet irradiance promote the micropollutant degradation. However, the presence of bicarbonate and humic acid inhibit micropollutant degradation. The mechanism of micropollutant abatement was elaborated based on reactive species contributions, density functional theory calculation and degradation routes. Free radicals (HO•, Cl•, ClO• and Cl2•-) could be generated by chlorine photolysis and subsequent propagation reactions. The concentrations of HO• and Cl• are 1.14 × 10-13 M and 2.0 × 10-14 M in optimal condition, respectively, and the total contributions of HO• and Cl• for the degradation of atrazine, primidone, ibuprofen and carbamazepine are 24 %, 48 %, 70 % and 43 %, respectively. The degradation routes of four micropollutants are elucidated based on intermediate identification, Fukui function and frontier orbital theory. Micropollutants can be effectively degraded in actual wastewater effluent, and the small molecule compound proportion increases during effluent organic matter evolution. Compared with photolysis and electrolysis, the coupling of the two processes has potential for energy saving in micropollutant degradation, which shed light on the prospects of ultraviolet light-emitting diode coupling with electrochemical process for effluent treatment.

11.
Water Res ; 221: 118769, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752098

RESUMO

Treatment of highly contaminated wastewaters containing refractory or toxic organic contaminants (e.g. industrial wastewaters) is becoming a global challenge. Most technologies focus on efficient degradation of organic contaminants. Here we improve the cathode/FeIII/peroxydisulfate (PDS) technology by turning down the current density and develop an innovative mechanism for organic contaminants abatement, namely polymerization rather than degradation, which allows simultaneous contaminants removal and resource recovery from wastewater. This polymerization leads to organic-particles (suspended solid organic-polymers) formation in bulk solution, which is demonstrated by eight kinds of representative organic contaminants. Taking phenol as a representative, 83% of PDS is saved compared to degradation process, with 87.2% of DOC removal. The formed suspended solid organic-polymers occupy 59.2% of COD of the original organics in solution, and can be easily separated from aqueous solution by sedimentation or filtration. The separated organic-polymers are a series of polymers coupled by phenolic monomers, as confirmed by FTIR and ESI-MS analyzes. The energy contained in the recovered organic polymers (4.76 × 10-5 kWh for 100 mL of 1 mM phenol solution in this study) can fully compensate the consumed electrical energy (2.8 × 10-5 kWh) in the treatment process. A representative polymerization model for this process is established, in which the SO4•- and HO• generated from PDS activation initiate the polymerization and improve the polymerization degree by the production of oligomer intermediates. A practical coking wastewater treatment is carried out to verify the research results and get positive feedback, with 56.0% of DOC abatement and the suspended solid organic-polymers accounts for 42.5% of the total COD in the raw wastewater. The energy consumption (47 kWh/kg COD, including electricity and PDS cost) is lower than the values in previous reports. This study provides a novel method for industrial wastewater treatment based on polymerization mechanism, which is expected to recover resources while removing pollutants with low consumption.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eletrodos , Compostos Férricos , Oxirredução , Fenol , Polímeros , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
12.
Bioengineered ; 13(3): 6819-6838, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35311629

RESUMO

The purpose of this research was to explore the diagnostic/prognostic significance and prospective molecular mechanisms of mitogen-activated protein kinase kinase kinases (MAP3Ks) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Diagnostic/prognostic significance of MAP3Ks was screened in the GSE1450 data set and validated in the Guangxi cohort. Various bioinformatics tools were used to explore the biological functions of prognosis-related genes. Subsequently, molecular biology assays were used to verify the biological functions and molecular mechanisms of specific gene. MAP3K9 was observed to be differentially expressed in HCC and adjacent tissues with satisfactory diagnostic value. It was discovered in survival analysis that MAP3K13 and MAP3K15 were associated with overall survival (OS) of patients with HBV-related HCC in the GSE1450 data set and the Guangxi cohort. Nomograms were established based on prognosis-related genes and clinical factors for individualized risk assessment. The assays on HCC cells demonstrated that MAP3K13 regulated the death and proliferation of HCC cells by activating the JNK pathway and inducing the expression of apoptosis-related factors. In conclusion, our results suggested that MAP3K9 might serve as a diagnostic biomarker in HBV-related HCC and MAP3K13 and MAP3K15 might serve as useful prognostic biomarkers. Besides, cytological assays prompted that MAP3K13 might impact the prognosis of HCC by regulating the JNK pathway and inducing apoptosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MAP Quinase Quinase Quinases/metabolismo , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , China , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/patologia , Estudos Prospectivos
13.
Front Microbiol ; 13: 1084097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699598

RESUMO

Fulvic acid (FA) has been shown to play a decisive role in controlling the environmental geochemical behavior of metals. As a green and natural microbial metabolite, FA is widely used in environmental remediation because of its good adsorption complexation and redox ability. This paper introduces the reaction mechanism and properties of FA with metals, and reviews the progress of research on the remediation of metal pollutant by FA through physicochemical remediation and bioremediation. FA can control the biotoxicity and migration ability of some metals, such as Pb, Cr, Hg, Cd, and As, through adsorption complexation and redox reactions. The concentration, molecular weight, and source are the main factors that determine the remediation ability of FA. In addition, the ambient pH, temperature, metal ion concentrations, and competing components in sediment environments have significant effects on the extent and rate of a reaction between metals and FA during the remediation process. Finally, we summarize the challenges that this promising environmental remediation tool may face. The research directions of FA in the field of metals ecological remediation are also prospected. This review can provide new ideas and directions for the research of remediation of metals contaminants in sediments.

14.
J Cancer ; 12(12): 3486-3500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995626

RESUMO

Background: Hepatitis B virus infection is associated with liver disease, including cancers. In this study, we assessed the power of sex-determining region Y (SRY)-related high-mobility group (HMG)-box 4(SOX4) gene to predict the clinical course of hepatocellular carcinoma (HCC). Methods: To evaluate the differential expression of SOX4 and its diagnostic and prognostic potential in HCC, we analyzed the GSE14520 dataset. Stratified analysis and joint-effect analysis were done using SOX4 and clinical factor. We then designed a nomogram for predicting the clinical course of HCC. Differential SOX4 expression and its correlation with tumor stage as well as its diagnostic and prognostic value were analyzed on the oncomine and GEPIA websites. Gene set enrichment analysis was explored as well as candidate gene ontology and metabolic pathways modulated by in SOX4 HCC. Results: Our analysis revealed that the level of SOX4 was significantly upregulated in tumor issue (P <0.001). This observation was validated through oncomine dataset and MERAV analysis (all P <0.05). Diagnostic receiver operating characteristic (ROC) analysis of SOX4 suggested it has diagnostic potential in HCC (GSE14520 dataset: P <0.001, area under curve (AUC) = 0.782; Oncomine: (Wurmbach dataset) P = 0.002, AUC = 0.831 and (Mas dataset) P <0.001, AUC = 0.947). In addition, SOX4 exhibited high correlation with overall survival of HBV-associated HCC (adjusted P = 0.004, hazard ratio (HR) (95% confidence interval (CI)) = 2.055 (1.261-3.349) and recurrence-free survival (adjusted P = 0.008, HR (95% CI) = 1.721 (1.151-2.574). These observations which were verified by GEPIA analysis for overall survival (P = 0.007) and recurrence-free survival (P= 0.096). Gene enrichment analysis revealed that affected processes included lymphocyte differentiation, pancreatic endocrine pathways, and insulin signaling pathway. SOX4 prognostic value was evaluated using nomogram analysis for HCC 1, 3, and 5-year, survival. Conclusion: Differential SOX4 expression presents an avenue of diagnosing and predicting clinical course of HCC. In HCC, SOX4 may affect TP53 metabolic processes, lymphocyte differentiation and the insulin signaling pathway.

15.
Chemosphere ; 261: 127658, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32731017

RESUMO

Competitive kinetics and scavenging assay are commonly used for radical quantification. However, the accuracy of the two methods has been challenged in electrochemical advanced oxidation processes (EAOPs) since the strong reactivity of electrode against organic indicators may disrupt the quantitative relationship between indicator consumption and radical concentration. The present study focused on screening suitable indicators and developing suitable methods for determining the steady-state concentrations of SO4•- and HO• ([SO4•-]ss and [HO•]ss) in several EAOPs for water treatment based on competitive kinetics and scavenging assay. The applicability of the modified methods and available indicators were investigated through experimental and kinetic analysis. In anode alone process, the competitive kinetics was more appropriate than scavenging assay and benzoic acid (BA) met the basic requirement of being a competitor to determine the [HO•]ss. In cathode alone process, BA was more resistant to interfering factors than other competitors (ibuprofen, atrazine and nitrobenzene) and its reaction rate involved only the radical oxidation even when the reaction conditions varied over a wide range. Therefore, the [HO•]ss could be obtained by the competitive kinetic equation of BA when HO• existed alone. When HO• coexisted with SO4•-, a two-step method combining scavenging assay and competitive kinetics was proposed to measure [SO4•-]ss and [HO•]ss, in which tert-butyl alcohol and BA were added as scavenger and competitor, respectively. Furthermore, the reliability of each approach was verified by the experimental results and kinetic analysis.


Assuntos
Radical Hidroxila/química , Poluentes Químicos da Água/química , Atrazina/análise , Ácido Benzoico , Eletrodos , Cinética , Oxirredução , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Purificação da Água
16.
Sci Total Environ ; 738: 139636, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531584

RESUMO

To use the lanthanum hydroxide (La(OH)3) as a low-cost, highly-efficient, and recyclable adsorbent, it could be embedded on a magnetic substance to improve its physical features and lower the overall cost. Herein, novel millimetric-size magnetic lanthanum-modified bentonite (La-MB) granules were fabricated for P sequestration, and the adsorption performance and mechanisms were systematic studied. The maximum capacity of P uptake by La-MB was up to 48.4 mg/g, which was higher than many previous reported La-based adsorbents. Moreover, the enhanced uptake of P was achieved over a wide pH range (3-9) and in the coexistence of common anions (Cl-, NO3-, and SO42-). Besides, the exhausted La-MB can be effectively regenerated by 5 mol/L NaOH with about 94.5% desorption efficiency and 60.8% uptake capacity remained during 5 cycles. The La-MB also exhibited excellent performance of anti-interference in two kinds of real wastewaters. The postsorption characterization and DFT calculations revealed that the electrostatic interaction and chemical precipitation jointly facilitated phosphate sequestration by La-MB during the rapid sorption phase, while ligand exchange and complexation reaction played more important roles than others during the slow sorption step. The electrostatic interaction not only effectively promoted the ligand exchange, and also further accelerated chemical precipitation via the formation of LaPO4 during the whole process of phosphate uptake. Overall, millimetric La-MB is considered to have great potential for engineering application, and this work also provides new insights into the molecular-level mechanism of phosphate sequestration by La-MB.


Assuntos
Lantânio , Fosfatos , Adsorção , Bentonita , Fenômenos Magnéticos
17.
J Cancer ; 11(4): 906-918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31949494

RESUMO

Objective: The goal of our current study is to assess the immunohistochemical of p53, p21, nm23, and VEGF expression in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) prognosis after hepatectomy, as well as the prospective molecular mechanisms of prognostic indicator. Methods: There were 419 HBV-related HCC patients who were from southern China of Guangxi province and were used to evaluate the immunohistochemical expression for these biomarkers in prognosis. A genome-wide expression microarray dataset of HBV-related HCC were obtained from GSE14520. Results: In our study, the expression of p53, p21, and nm23 in cancer tissues of patients with hepatitis B-related hepatocellular carcinoma did not affected the clinical outcome of 2 years, 5 years or overall. Patients with high expression of VEGF had a worse overall survival after 2 years of surgery than patients with low expression (adjusted P=0.040, adjusted HR = 1.652, 95% CI = 1.024-2.665). Survival analysis of VEGF in GSE14520 cohort also demonstrated that VEGF mRNA expression also significantly associated with HBV-related HCC OS (adjusted P=0.035, adjusted HR =1.651, 95% CI =1.035-2.634). The prospective molecular mechanisms by co-expression analysis suggested that VEGF might be correlated to regulation of cell proliferation, cell growth and apoptotic process, Rap1 signaling pathway, HIF-1 signaling pathway, PPAR signaling pathway, cell cycle. Whereas the GSEA suggested that VEGF might involve in the regulation of HIF and HIF1A pathway, and TP53 regulation pathway. Conclusion: Our findings suggested that VEGF might be a prognostic indicator of HBV-related HCC, and we also identified the VEGF prospective molecular mechanisms through the whole genome co-expression and GSEA approaches.

18.
Chemosphere ; 220: 1067-1074, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33395793

RESUMO

Due to its high mass transfer efficiency, microbubble ozonation has been widely used in water treatment to degrade refractory compounds. Compared to conventional bubbles (diameters larger than 1 mm), microbubbles (diameter less than 50 µm) have special interfacial characteristics that are probably advantageous in ozonation. However, the mechanisms involved are still unclear and therefore our primary aim here was to explore the interfacial effect of microbubbles during ozonation process. Phenol and nitrobenzene degradation by ozone microbubbles and conventional bubbles were carried out across a broad pH range. We found that microbubble decomposition of pollutants was markedly more efficient than conventional bubbles in terms of ozone consumption. Hydroxyl radical scavenger experiments of phenol revealed that the enhancement of microbubble might result from the increase of ozone concentration in interfacial region and a mathematical simulation further proved this synthesis by showing that ozone concentration is not homogenous throughout the reaction medium and forms a steep gradient in the liquid film of microbubbles. As for nitrobenzene, the acceleration of hydroxyl radicals was supposed to be the dominate factor which might be the consequence of high gas concentration in liquid film. These findings shed light on the mechanism of interfacial reaction in microbubble ozonation.

19.
Oncol Rep ; 42(1): 79-90, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059105

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, and early diagnosis and assessment may enhance the quality of life and survival of patients. The prognostic value of key family 2 cystatins subunit in PDAC patients remains unknown. The potential molecular roles of family 2 cystatins and related pathways were investigated using bioinformatics analysis. The relationship of family 2 cystatin expression levels and clinical outcomes of 112 patients with early­stage PDAC were evaluated via univariate and combined survival analysis. A prognostic nomogram model was also constructed and gene set enrichment analysis was performed to investigate potential pathways in PDAC. The pathways, interaction networks, and Gene Ontology term analysis of the cystatin gene family were analyzed in the present study. Cystatin F (CST7) was identified as the key subunit of family 2 cystatins in survival analysis. PDAC patients who harbored a higher expression level of CST7 had a lower risk in overall survival (adjusted HROS=0.44, 95% CI=0.25­0.77, P=0.004) and a longer survival time in various subgroups. The prognostic nomogram indicated that the CST7 expression model effectively predicted the outcomes of patients with early­stage PDAC (predictive ability >0.75). In the gene set enrichment analysis, it was revealed that CST7 expression may be involved in immune regulation and be associated with cell adhesion. CST7 could be a useful biomarker for the prognostic prediction of early­stage PDAC after pancreaticoduodenectomy.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Cistatinas/genética , Cistatinas/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Estadiamento de Neoplasias , Nomogramas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Mapas de Interação de Proteínas , Análise de Sobrevida
20.
Chemosphere ; 223: 494-503, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784756

RESUMO

To investigate the effect of cathode materials on organics degradation in a cathode/Fe3+/PMS process, different cathode materials (platinum, copper and iron) were selected and their performances were compared with iohexol as target organics. The optimal conditions were found to be different for different cathode/Fe3+/PMS processes. With a relatively high cathodic current input (2.0 mA/cm2), similar results were found for all the three cathode/Fe3+/PMS processes. With a small cathodic current input (not higher than 1.0 mA/cm2), the iohexol removal followed the order of Fe-cathode/Fe3+/PMS > Cu-cathode/Fe3+/PMS > Pt-cathode/Fe3+/PMS, due to the corrosion of Cu-cathode and Fe-cathode and the more serious corrosion of Fe-cathode than Cu-cathode. The corrosion of non-inert cathode materials (Cu-cathode and Fe-cathode) meant that these cathodes not only transmitted electrons but also participated in aqueous reactions, which complicated the mechanisms of cathode/Fe3+/PMS processes. The radical identification experiments indicated that SO4- was more important than OH for iohexol degradation in Cu-cathode/Fe3+/PMS process, while OH played a major role in Pt-cathode/Fe3+/PMS and Fe-cathode/Fe3+/PMS processes. The different reaction mechanisms resulted in different iohexol transformation pathways in cathode/Fe3+/PMS processes with different cathode materials.


Assuntos
Cobre/metabolismo , Iohexol/metabolismo , Ferro/metabolismo , Peróxidos/metabolismo , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA