Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Spine J ; 33(6): 2451-2456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724777

RESUMO

INTRODUCTION AND AIM: Scoliometry is not always included in the examination protocol of IS patients. The aim of this report is to examine the degree of correlation of Segmental Rib Index (SRI) to scoliometry, in order for SRI to be used as a surrogate of scoliometric angle of trunk rotation (ATR). MATERIAL AND METHOD: 66 Idiopathic Scoliosis (IS) subjects were studied, with a mean age 12.2 ± 2.9 years, 18 boys and 48 girls: 20 thoracic, 22 thoracolumbar and 24 lumbar curves. The standing lateral spine radiographs (LSR) were obtained and the Segmental Rib Index (SRI) from T1 to T12 were assessed. The ATR was documented. RESULTS: In all 66 cases with IS the scoliometer readings (ATR) were significantly correlated to the SRI at the T6, T7 and T8 levels. In the thoracic curves SRI and ATR correlations were significant for the levels T6-T12. DISCUSSION: It was suggested that as long as the patients doesn't have scoliometer measurements, the SRI, could be used as a surrogate for scoliometry. It was also found that in thoracic, thoracolumbar and lumbar level, in both genders, changing from the flexed position to the standing position, the mean trunk asymmetry (TA) decreases. Therefore, if these patients had their TA measured using a scoliometer during the Adams test, their body asymmetry would have been greater than that measured using the SRI method on standing LSR. Consequently, it is evident that the significantly correlated SRI used as a surrogate for the scoliometric assessment of TA is reasonably a strong surrogate.


Assuntos
Costelas , Escoliose , Humanos , Escoliose/diagnóstico por imagem , Feminino , Masculino , Adolescente , Criança , Costelas/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem , Radiografia/métodos , Vértebras Lombares/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem
2.
J Clin Med ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673436

RESUMO

In this opinion article, there is an analysis and discussion regarding the effects of growth on the spinal and rib cage deformities, the role of the rib cage in scoliogeny, the lateral spinal profile in adolescent idiopathic scoliosis (AIS), the genetics and epigenetics of AIS, and the interesting and novel field investigating the sleep impact at nighttime on AIS in relation to the sequence of the scoliogenetic changes in scoliotics. The expressed opinions are mainly based on the published peer-reviewed research of the author and his team of co-authors. Based on the analysis noted above, it can be postulated that the vertebral growth changes in the spine during initial idiopathic scoliosis (IS) development are not primary-intrinsic but secondary changes. The primary cause starting the deformity is not located within the vertebral bodies. Instead, the deformations seen in the vertebral bodies are the secondary effects of asymmetrical loads exerted upon them, due to muscular loads, growth, and gravity.

3.
Healthcare (Basel) ; 11(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998495

RESUMO

The aim of this report is to evaluate the segmental rib index (RI) from the T1 to T12 spinal levels in mild and moderate idiopathic scoliosis (IS) curves of thoracic, thoracolumbar and lumbar type by gender. The relationship of segmental RI to the frontal plane radiological deformity presented as the Cobb angle and to the posterior truncal surface deformity presented as the scoliometric readings of Angle of Trunk Rotation (ATR) in these patients is also assessed. Any statistically significant relationship between these parameters would be very important for biomechanical relations in rib cage (RC) deformity presented as rib hump deformity (RHD) and deformity in the spine, and would thus provide valuable information about scoliogeny. The segmental rib index (RI) is presented in 83 boys and girls with mild and moderate IS. The measurements include the scoliometric readings for truncal asymmetry (TA), the Cobb angle assessment and the segmental RI from T1-T12. The statistical package SPSS 23 was used for statistical analysis. The TA was documented and the Cobb angle is presented by gender and curve type. The segmental RI of thoracic, thoracolumbar and lumbar curves are presented for the first time. The correlations of the segmental RI to surface deformity presented as rib hump deformity (RHD) in all IS patients, and particularly in thoracic curves, to Cobb angle by gender and age and the comparison of the segmental RI index of asymmetric but not scoliotic children to the scoliotic peers by curve (in thoracic, thoracolumbar, lumbar curves) in boys and girls are presented. The findings emphasize the significant protagonistic role of thoracic asymmetry in relation to the spinal deformity, mainly in girls for the thoracic and in boys for the thoracolumbar curves. The cut-off point of age of the examined scoliotics was 14 years, which is when the RI shows a stronger correlation with spinal deformity, namely when thoracic deformity is decisively effective in the development of thoracic spinal deformity, in terms of Cobb angle. In summary, the results of this study may provide scoliogenic implications for IS, as far as the role of the thorax is concerned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA