Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Soc Nephrol ; 26(9): 2267-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25745027

RESUMO

Lipid abnormalities may have an effect on clinical outcomes of patients on dialysis. Recent studies have indicated that HDL dysfunction is a hallmark of ESRD. In this study, we compared HDL composition and metrics of HDL functionality in patients undergoing hemodialysis (HD) or peritoneal dialysis (PD) with those in healthy controls. We detected a marked suppression of several metrics of HDL functionality in patients on HD or PD. Compositional analysis revealed that HDL from both dialysis groups shifted toward a more proinflammatory phenotype with profound alterations in the lipid moiety and protein composition. With regard to function, cholesterol efflux and anti-inflammatory and antiapoptotic functions seemed to be more severely suppressed in patients on HD, whereas HDL-associated paraoxonase activity was lowest in patients on PD. Quantification of enzyme activities involved in HDL metabolism suggested that HDL particle maturation and remodeling are altered in patients on HD or PD. In summary, our study provides mechanistic insights into the formation of dysfunctional HDL in patients with ESRD who are on HD or PD.


Assuntos
Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Lipoproteínas HDL/sangue , Lipoproteínas HDL/química , Diálise Renal/métodos , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Idoso , Arildialquilfosfatase/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/sangue , Feminino , Humanos , Falência Renal Crônica/enzimologia , Lipopolissacarídeos/farmacologia , Lipase Lipoproteica/sangue , Lipoproteínas HDL/farmacologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Diálise Peritoneal , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Proteínas de Transferência de Fosfolipídeos/sangue , Triglicerídeos/sangue
2.
J Mol Cell Cardiol ; 84: 1-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25828762

RESUMO

BACKGROUND: Cardiac alternans are proarrhythmic and mechanistically link cardiac mechanical dysfunction and sudden cardiac death. Beat-to-beat alternans occur when beats with large Ca(2+) transients and long action potential duration (APD) alternate with the converse. APD alternans are typically driven by Ca(2+) alternans and sarcoplasmic reticulum (SR) Ca(2+) release alternans. But the effect of intercellular communication via gap junctions (GJ) on alternans in the intact heart remains unknown. OBJECTIVE: We assessed the effects of cell-to-cell coupling on local alternans in intact Langendorff-perfused mouse hearts, measuring single myocyte [Ca(2+)] alternans synchronization among neighboring cells, and effects of ß-adrenergic receptor (ß-AR) activation and reduced GJ coupling. METHODS AND RESULTS: Mouse hearts (C57BL/6) were retrogradely perfused and loaded with Fluo8-AM to record cardiac myocyte [Ca(2+)] in situ with confocal microscopy. Single cell resolution allowed analysis of alternans within the intact organ during alternans induction. Carbenoxolone (25 µM), a GJ inhibitor, significantly increased the occurrence and amplitude of alternans in single cells within the intact heart. Alternans were concordant between neighboring cells throughout the field of view, except transiently during onset. ß-AR stimulation only reduced Ca(2+) alternans in tissue that had reduced GJ coupling, matching effects seen in isolated myocytes. CONCLUSIONS: Ca(2+) alternans among neighboring myocytes is predominantly concordant, likely because of electrical coupling between cells. Consistent with this, partial GJ uncoupling increased propensity and amplitude of Ca(2+) alternans, and made them more sensitive to reversal by ß-AR activation, as in isolated myocytes. Electrical coupling between myocytes may thus limit the alternans initiation, but also allow alternans to be more stable once established.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Coração/efeitos dos fármacos , Técnicas In Vitro , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Miócitos Cardíacos/efeitos dos fármacos
3.
J Mol Cell Cardiol ; 89(Pt B): 365-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432951

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) agonists are a rapidly growing class of drugs developed for treating type-2 diabetes mellitus. Patients with diabetes carry an up to 5-fold greater mortality risk compared to non-diabetic patients, mainly as a result of cardiovascular diseases. Although beneficial cardiovascular effects have been reported, exact mechanisms of GLP-1R-agonist action in the heart, especially in human myocardium, are poorly understood. The effects of GLP-1R-agonists (exenatide, GLP-1(7-36)NH2, PF-06446009, PF-06446667) on cardiac contractility were tested in non-failing atrial and ventricular trabeculae from 72 patients. The GLP-1(7-36)NH2 metabolite, GLP-1(9-36)NH2, was also examined. In electrically stimulated trabeculae, the effects of compounds on isometric force were measured in the absence and presence of pharmacological inhibitors of signal transduction pathways. The role of ß-arrestin signaling was examined using a ß-arrestin partial agonist, PF-06446667. Expression levels were tested by immunoblots. Translocation of GLP-1R downstream molecular targets, Epac2, GLUT-1 and GLUT-4, were assessed by fluorescence microscopy. All tested GLP-1R-agonists significantly increased developed force in human atrial trabeculae, whereas GLP-1(9-36)NH2 had no effect. Exendin(9-39)NH2, a GLP-1R-antagonist, and H-89 blunted the inotropic effect of exenatide. In addition, exenatide increased PKA-dependent phosphorylation of phospholamban (PLB), GLUT-1 and Epac2 translocation, but not GLUT-4 translocation. Exenatide failed to enhance contractility in ventricular myocardium. Quantitative real-time PCR (qRT-PCR) revealed a significant higher GLP-1R expression in the atrium compared to ventricle. Exenatide increased contractility in a dose-dependent manner via GLP-1R/cAMP/PKA pathway and induced GLUT-1 and Epac2 translocation in human atrial myocardium, but had no effect in ventricular myocardium. Therapeutic use of GLP-1R-agonists may therefore impart beneficial effects on myocardial function and remodelling.


Assuntos
Cardiotônicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Peptídeos/farmacologia , Peçonhas/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Átrios do Coração/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Humanos , Contração Miocárdica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Circulation ; 130(3): 244-55, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24928680

RESUMO

BACKGROUND: A hallmark of heart failure is impaired cytoplasmic Ca(2+) handling of cardiomyocytes. It remains unknown whether specific alterations in nuclear Ca(2+) handling via altered excitation-transcription coupling contribute to the development and progression of heart failure. METHODS AND RESULTS: Using tissue and isolated cardiomyocytes from nonfailing and failing human hearts, as well as mouse and rabbit models of hypertrophy and heart failure, we provide compelling evidence for structural and functional changes of the nuclear envelope and nuclear Ca(2+) handling in cardiomyocytes as remodeling progresses. Increased nuclear size and less frequent intrusions of the nuclear envelope into the nuclear lumen indicated altered nuclear structure that could have functional consequences. In the (peri)nuclear compartment, there was also reduced expression of Ca(2+) pumps and ryanodine receptors, increased expression of inositol-1,4,5-trisphosphate receptors, and differential orientation among these Ca(2+) transporters. These changes were associated with altered nucleoplasmic Ca(2+) handling in cardiomyocytes from hypertrophied and failing hearts, reflected as increased diastolic Ca(2+) levels with diminished and prolonged nuclear Ca(2+) transients and slowed intranuclear Ca(2+) diffusion. Altered nucleoplasmic Ca(2+) levels were translated to higher activation of nuclear Ca(2+)/calmodulin-dependent protein kinase II and nuclear export of histone deacetylases. Importantly, the nuclear Ca(2+) alterations occurred early during hypertrophy and preceded the cytoplasmic Ca(2+) changes that are typical of heart failure. CONCLUSIONS: During cardiac remodeling, early changes of cardiomyocyte nuclei cause altered nuclear Ca(2+) signaling implicated in hypertrophic gene program activation. Normalization of nuclear Ca(2+) regulation may therefore be a novel therapeutic approach to prevent adverse cardiac remodeling.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Núcleo Celular/metabolismo , Insuficiência Cardíaca/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Histona Desacetilases/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Coelhos
5.
Circ Res ; 113(5): 527-38, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23825358

RESUMO

RATIONALE: Synchronized release of Ca²âº into the cytosol during each cardiac cycle determines cardiomyocyte contraction. OBJECTIVE: We investigated synchrony of cytosolic [Ca²âº] decay during diastole and the impact of cardiac remodeling. METHODS AND RESULTS: Local cytosolic [Ca²âº] transients (1-µm intervals) were recorded in murine, porcine, and human ventricular single cardiomyocytes. We identified intracellular regions of slow (slowCaR) and fast (fastCaR) [Ca²âº] decay based on the local time constants of decay (TAUlocal). The SD of TAUlocal as a measure of dyssynchrony was not related to the amplitude or the timing of local Ca²âº release. Stimulation of sarcoplasmic reticulum Ca²âº ATPase with forskolin or istaroxime accelerated and its inhibition with cyclopiazonic acid slowed TAUlocal significantly more in slowCaR, thus altering the relationship between SD of TAUlocal and global [Ca²âº] decay (TAUglobal). Na⁺/Ca²âº exchanger inhibitor SEA0400 prolonged TAUlocal similarly in slowCaR and fastCaR. FastCaR were associated with increased mitochondrial density and were more sensitive to the mitochondrial Ca²âº uniporter blocker Ru360. Variation in TAUlocal was higher in pig and human cardiomyocytes and higher with increased stimulation frequency (2 Hz). TAUlocal correlated with local sarcomere relengthening. In mice with myocardial hypertrophy after transverse aortic constriction, in pigs with chronic myocardial ischemia, and in end-stage human heart failure, variation in TAUlocal was increased and related to cardiomyocyte hypertrophy and increased mitochondrial density. CONCLUSIONS: In cardiomyocytes, cytosolic [Ca²âº] decay is regulated locally and related to local sarcomere relengthening. Dyssynchronous intracellular [Ca²âº] decay in cardiac remodeling and end-stage heart failure suggests a novel mechanism of cellular contractile dysfunction.


Assuntos
Sinalização do Cálcio/fisiologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/citologia , Miócitos Cardíacos/fisiologia , Remodelação Ventricular/fisiologia , Compostos de Anilina/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/metabolismo , Colforsina/farmacologia , Citosol/metabolismo , Diástole , Estimulação Elétrica , Etiocolanolona/análogos & derivados , Etiocolanolona/farmacologia , Humanos , Hipertrofia , Hipertrofia Ventricular Esquerda/fisiopatologia , Indóis/farmacologia , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Éteres Fenílicos/farmacologia , Compostos de Rutênio/farmacologia , Sarcômeros/ultraestrutura , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/enzimologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , Sus scrofa , Suínos
6.
J Cardiovasc Pharmacol ; 65(3): 211-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25329749

RESUMO

Calcium (Ca) is a universal second messenger involved in the regulation of various cellular processes, including electrical signaling, contraction, secretion, memory, gene transcription, and cell death. In heart, Ca governs cardiomyocyte contraction, is central in electrophysiological properties, and controls major signaling pathway implicated in gene transcription. How cardiomyocytes decode Ca signal to regulate gene expression without interfering with, or being controlled by, "contractile" Ca that floods the entire cytosol during each heartbeat is still elusive. In this review, we summarize recent findings on nuclear Ca regulation and its downstream signaling in cardiomyocytes. We will address difficulties in reliable quantification of nuclear Ca fluxes and discuss its role in the development and progression of cardiac hypertrophy and heart failure. We also point out key open questions to stimulate future work.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Núcleo Celular/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 33(5): 1020-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23493288

RESUMO

OBJECTIVE: Elevated levels of advanced oxidation protein products have been described in several chronic inflammatory diseases, like chronic renal insufficiency, rheumatoid arthritis, and atherosclerosis. Recent findings revealed that advanced oxidation protein products are inhibitors of the major high-density lipoprotein receptor, scavenger receptor class B, type 1 (SR-BI). Here, we investigated which oxidation-induced structural alterations convert plasma albumin into a high-density lipoprotein-receptor inhibitor. APPROACH AND RESULTS: Exposure of albumin to the physiological oxidant, hypochlorous acid, generated high-affinity SR-BI ligands. Protection of albumin-lysine residues before exposure to hypochlorous acid as well as regeneration of N-chloramines after oxidation of albumin completely prevented binding of oxidized albumin to SR-BI, indicating that modification of albumin-lysine residues is required to generate SR-BI ligands. Of particular interest, N-chloramines within oxidized albumin promoted irreversible binding to SR-BI, resulting in permanent receptor blockade. We observed that the SR-BI inhibitory activity of albumin isolated from chronic kidney disease patients correlated with the content of the myeloperoxidase-specific oxidation product 3-chlorotyrosine and was associated with alterations in the composition of high-density lipoprotein. CONCLUSIONS: Given that several potential atheroprotective activities of high-density lipoprotein are mediated by SR-BI, the present results raise the possibility that oxidized plasma albumin, through permanent SR-BI blockade, contributes to the pathophysiology of cardiovascular disease.


Assuntos
Ácido Hipocloroso/farmacologia , Lipoproteínas HDL/antagonistas & inibidores , Receptores de Lipoproteínas/antagonistas & inibidores , Albumina Sérica/metabolismo , Animais , Antígenos CD36/metabolismo , Células CHO , Doenças Cardiovasculares/etiologia , Cricetinae , Cricetulus , Humanos , Falência Renal Crônica/metabolismo , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo
8.
Biophys J ; 100(10): 2356-66, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21575569

RESUMO

Quantification of subcellularly resolved Ca²âº signals in cardiomyocytes is essential for understanding Ca²âº fluxes in excitation-contraction and excitation-transcription coupling. The properties of fluorescent indicators in intracellular compartments may differ, thus affecting the translation of Ca²âº-dependent fluorescence changes into [Ca²âº] changes. Therefore, we determined the in situ characteristics of a frequently used Ca²âº indicator, Fluo-4, and a ratiometric Ca²âº indicator, Asante Calcium Red, and evaluated their use for reporting and quantifying cytoplasmic and nucleoplasmic Ca²âº signals in isolated cardiomyocytes. Ca²âº calibration curves revealed significant differences in the apparent Ca²âº dissociation constants of Fluo-4 and Asante Calcium Red between cytoplasm and nucleoplasm. These parameters were used for transformation of fluorescence into nucleoplasmic and cytoplasmic [Ca²âº]. Resting and diastolic [Ca²âº] were always higher in the nucleoplasm. Systolic [Ca²âº] was usually higher in the cytoplasm, but some cells (15%) exhibited higher systolic [Ca²âº] in the nucleoplasm. Ca²âº store depletion or blockade of Ca²âº leak pathways eliminated the resting [Ca²âº] gradient between nucleoplasm and cytoplasm, whereas inhibition of inositol 1,4,5-trisphosphate receptors by 2-APB reversed it. The results suggest the presence of significant nucleoplasmic-to-cytoplasmic [Ca²âº] gradients in resting myocytes and during the cardiac cycle. Nucleoplasmic [Ca²âº] in cardiomyocytes may be regulated via two mechanisms: diffusion from the cytoplasm and active Ca²âº release via inositol 1,4,5-trisphosphate receptors from perinuclear Ca²âº stores.


Assuntos
Envelhecimento/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Envelhecimento/efeitos dos fármacos , Compostos de Anilina/metabolismo , Animais , Compostos de Boro/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Calibragem , Núcleo Celular/efeitos dos fármacos , Diástole/efeitos dos fármacos , Estimulação Elétrica , Fluorescência , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Sístole/efeitos dos fármacos , Tetracaína/farmacologia , Xantenos/metabolismo
9.
Eur J Heart Fail ; 20(12): 1673-1685, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30191648

RESUMO

BACKGROUND: Disruption of Ca2+ homeostasis is a key pathomechanism in heart failure. CaMKII-dependent hyperphosphorylation of ryanodine receptors in the sarcoplasmic reticulum (SR) increases the arrhythmogenic SR Ca2+ leak and depletes SR Ca2+ stores. The contribution of conversely acting serine/threonine phosphatases [protein phosphatase 1 (PP1) and 2A (PP2A)] is largely unknown. METHODS AND RESULTS: Human myocardium from three groups of patients was investigated: (i) healthy controls (non-failing, NF, n = 8), (ii) compensated hypertrophy (Hy, n = 16), and (iii) end-stage heart failure (HF, n = 52). Expression of PP1 was unchanged in Hy but greater in HF compared to NF while its endogenous inhibitor-1 (I-1) was markedly lower expressed in both compared to NF, suggesting increased total PP1 activity. In contrast, PP2A expression was lower in Hy and HF compared to NF. Ca2+ homeostasis was severely disturbed in HF compared to Hy signified by a higher SR Ca2+ leak, lower systolic Ca2+ transients as well as a decreased SR Ca2+ load. Inhibition of PP1/PP2A by okadaic acid increased SR Ca2+ load and systolic Ca2+ transients but severely aggravated diastolic SR Ca2+ leak and cellular arrhythmias in Hy. Conversely, selective activation of PP1 by a PP1-disrupting peptide (PDP3) in HF potently reduced SR Ca2+ leak as well as cellular arrhythmias and, importantly, did not compromise systolic Ca2+ release and SR Ca2+ load. CONCLUSION: This study is the first to functionally investigate the role of PP1/PP2A for Ca2+ homeostasis in diseased human myocardium. Our data indicate that a modulation of phosphatase activity potently impacts Ca2+ cycling properties. An activation of PP1 counteracts increased kinase activity in heart failure and successfully seals the arrhythmogenic SR Ca2+ leak. It may thus represent a promising future antiarrhythmic therapeutic approach.


Assuntos
Cálcio/metabolismo , Ativação Enzimática , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Proteína Fosfatase 1/metabolismo , Retículo Sarcoplasmático/metabolismo , Idoso , Western Blotting , Feminino , Insuficiência Cardíaca/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Fosforilação , Retículo Sarcoplasmático/patologia
10.
Cardiovasc Res ; 114(13): 1728-1737, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931291

RESUMO

Aims: In heart failure (HF), enhanced persistent Na+ current (INaL) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. However, the underlying regulatory mechanisms remain unclear. Our aim was to potentially investigate the regulation and electrophysiological contribution of neuronal sodium channel NaV1.8 in failing human heart and eventually to reveal a novel anti-arrhythmic therapy. Methods and results: By western blot, we found that NaV1.8 protein expression is significantly up-regulated, while of the predominant cardiac isoform NaV1.5 is inversely reduced in human HF. Furthermore, to investigate the relation of NaV1.8 regulation with the cellular proarrhythmic events, we performed comprehensive electrophysiology recordings and explore the effect of NaV1.8 on INaL, action potential duration (APD), Ca2+ spark frequency, and arrhythmia induction in human failing cardiomyocytes. NaV1.8 inhibition with the specific blockers A-803467 and PF-01247324 decreased INaL, abbreviated APD and reduced cellular-spontaneous Ca2+-release and proarrhythmic events in human failing cardiomyocytes. Consistently, in mouse cardiomyocytes stressed with isoproterenol, pharmacologic inhibition and genetically knockout of NaV1.8 (SCN10A-/-), were associated with reduced INaL and abbreviated APD. Conclusion: We provide first evidence of differential regulation of NaV1.8 and NaV1.5 in the failing human myocardium and their contribution to arrhythmogenesis due to generation of INaL. We propose inhibition of NaV1.8 thus constitutes a promising novel approach for selective anti-arrhythmic therapy in HF.


Assuntos
Arritmias Cardíacas/etiologia , Insuficiência Cardíaca/complicações , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Potenciais de Ação , Idoso , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Sinalização do Cálcio , Estudos de Casos e Controles , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Fatores de Tempo , Regulação para Cima , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
11.
Methods Mol Biol ; 1234: 135-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25304354

RESUMO

Nuclear Ca(2+) regulates key cellular processes, including gene expression, apoptosis, assembly of the nuclear envelope, and nucleocytoplasmic transport. Quantification of subcellularly resolved Ca(2+) signals is, therefore, essential for understanding physiological and pathological processes in various cell types. However, the properties of commonly used Ca(2+)-fluorescent indicators in intracellular compartments may differ, thus affecting the translation of Ca(2+)-dependent fluorescence changes into quantitative changes of Ca(2+) concentration. Here, we describe technical approaches for reliable subcellular quantification of [Ca(2+)] in the cytoplasm vs. the nucleus and the nuclear envelope by in situ calibration of fluorescein-derived fluorescent indicators Fluo-4 and Fluo-5N.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Imagem Molecular/métodos , Membrana Nuclear/metabolismo , Animais , Corantes Fluorescentes/química , Camundongos
12.
Eur J Heart Fail ; 16(12): 1292-300, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25201344

RESUMO

AIMS: The sarcoplasmic reticulum (SR) Ca(2+) leak is an important pathomechanism in heart failure (HF). It has been suggested that Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) is only relevant for the induction of the SR Ca(2+) leak in non-ischaemic but not in ischaemic HF. Therefore, we investigated CaMKII and its targets as well as the functional effects of CaMKII inhibition in human ischaemic cardiomyopathy (ICM, n = 37) and dilated cardiomyopathy (DCM, n = 40). METHODS AND RESULTS: Western blots showed a significantly increased expression (by 54 ± 9%) and autophosphorylation at Thr286 (by 129 ± 29%, P < 0.05 each) of CaMKII in HF compared with healthy myocardium. However, no significant difference could be detected in ICM compared with DCM as to the expression and autophosphorylation of CaMKII nor the phosphorylation of the target sites ryanodine receptor 2 (RyR2)-S2809, RyR2-S2815, and phospholamban-Thr17. Isolated human cardiomyocytes (CMs) of patients with DCM and ICM showed a similar frequency of diastolic Ca(2+) sparks (confocal microscopy) as well as of major arrhythmic events (Ca(2+) waves, spontaneous Ca(2+) transients). Despite a slightly smaller size of Ca(2+) sparks in DCM (P < 0.01), the calculated SR Ca(2+) leak [Ca(2+) spark frequecy (CaSpF) × amplitude × width × duration] did not differ between CMs of ICM vs. DCM. Importantly, CaMKII inhibition by autocamide-2-related inhibitory peptide (AIP, 1 µmol/L) reduced the SR Ca(2+) leak by ∼80% in both aetiologies (P < 0.05 each) and effectively decreased the ratio of arrhythmic cells (P < 0.05). CONCLUSION: Functional and molecular measures of the SR Ca(2+) leak are comparable in human ICM and DCM. CaMKII is equally responsible for the induction of the 'RyR2 leakiness' in both pathologies. Thus, CaMKII inhibition as a therapeutic measure may not be restricted to patients suffering from DCM but rather may be beneficial for the majority of HF patients.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Cálcio/metabolismo , Cardiomiopatia Dilatada/enzimologia , Isquemia Miocárdica/enzimologia , Retículo Sarcoplasmático/metabolismo , Western Blotting/métodos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Feminino , Insuficiência Cardíaca/patologia , Humanos , Masculino , Microscopia Confocal/métodos , Pessoa de Meia-Idade , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Peptídeos/farmacologia , Fosforilação/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
13.
J Am Coll Cardiol ; 63(15): 1569-79, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24315909

RESUMO

OBJECTIVES: This study sought to explore whether subclinical alterations of sarcoplasmic reticulum (SR) Ca(2+) release through cardiac ryanodine receptors (RyR2) aggravate cardiac remodeling in mice carrying a human RyR2(R4496C+/-) gain-of-function mutation in response to pressure overload. BACKGROUND: RyR2 dysfunction causes increased diastolic SR Ca(2+) release associated with arrhythmias and contractile dysfunction in inherited and acquired cardiac diseases, such as catecholaminergic polymorphic ventricular tachycardia and heart failure (HF). METHODS: Functional and structural properties of wild-type and catecholaminergic polymorphic ventricular tachycardia-associated RyR2(R4496C+/-) hearts were characterized under conditions of pressure overload induced by transverse aortic constriction (TAC). RESULTS: Wild-type and RyR2(R4496C+/-) hearts had comparable structural and functional properties at baseline. After TAC, RyR2(R4496C+/-) hearts responded with eccentric hypertrophy, substantial fibrosis, ventricular dilation, and reduced fractional shortening, ultimately resulting in overt HF. RyR2(R4496C+/-)-TAC cardiomyocytes showed increased incidence of spontaneous SR Ca(2+) release events, reduced Ca(2+) transient peak amplitude, and SR Ca(2+) content as well as reduced SR Ca(2+)-ATPase 2a and increased Na(+)/Ca(2+)-exchanger protein expression. HF phenotype in RyR2(R4496C+/-)-TAC mice was associated with increased mortality due to pump failure but not tachyarrhythmic events. RyR2-stabilizer K201 markedly reduced Ca(2+) spark frequency in RyR2(R4496C+/-)-TAC cardiomyocytes. Mini-osmotic pump infusion of K201 prevented deleterious remodeling and improved survival in RyR2(R4496C+/-)-TAC mice. CONCLUSIONS: The combination of subclinical congenital alteration of SR Ca(2+) release and pressure overload promoted eccentric remodeling and HF death in RyR2(R4496C+/-) mice, and pharmacological RyR2 stabilization prevented this deleterious interaction. These findings suggest potential clinical relevance for patients with acquired or inherited gain-of-function of RyR2-mediated SR Ca(2+) release.


Assuntos
Sinalização do Cálcio/genética , DNA/genética , Insuficiência Cardíaca/genética , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Remodelação Ventricular/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Progressão da Doença , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Knockout , Mutação , Miócitos Cardíacos/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA