Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Aquat Toxicol ; 268: 106843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281390

RESUMO

Abandoned mines generate effluents rich in heavy metals, and these contaminants are released uncontrolled into the nearby aquatic ecosystems, causing severe pollution. However, no real solution exists, leaving a legacy of global pollution. In this study, the efficiency of the treatment technologies in reducing the ecological impacts of mining effluents to freshwater ecosystems with different dilution capacities was tested using biofilm communities as biological indicators. The functional and structural recovery capacity of biofilm communities after 21 days of exposure was assessed. With this aim, we sampled aquatic biofilms from a pristine stream and exposed them to treated (T) and untreated (U) metal mining effluent from Frongoch abandoned mine (Mid Wales, UK). Additionally, we simulated two different flow conditions for the receiving stream: high dilution (HD) and low dilution (LD). After exposure, the artificial streams were filled with artificial water for 14 days to assess the biofilm recovery. Unexposed biofilm served as control for biofilm responses (functional and structural) measured throughout time. During the exposure, short term effects on biofilm functioning (photosynthetic efficiency, nutrient uptake) were observed in T-LD, U-HD, and U-LD, whereas long term effects (community composition, chl-a, and diatom metrics) were observed on the structure of all biofilms exposed to the treated and untreated mining effluent. On the other hand, metal accumulation occurred in biofilms exposed to the mining effluents. However, a functional recovery was observed for all treatments, except in the U-LD in which biofilm structure did not present a significant recovery after the exposure period. The results presented here highlight the need to consider the dilution capacity of the receiving stream to assess the real efficiency of treatment technologies applied to mining effluents to mitigate the ecological impact on freshwater ecosystems.


Assuntos
Ecossistema , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Metais/análise , Mineração , Água Doce , Biofilmes
2.
Membranes (Basel) ; 13(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37103876

RESUMO

The ever-increasing demand for phosphorus fertilisers for securing global food production, coupled with finite phosphate rock reserves, is one of the emerging problems in the world. Indeed, phosphate rock is listed as an EU critical raw material, triggering attention to find an alternative source to substitute the use of this limited resource. Cheese whey, characterized by a high content of organic matter and phosphorus, represents a promising feedstock for phosphorus recovery and recycling. An innovative application of a membrane system coupled with freeze concentration was assessed to recover phosphorus from cheese whey. The performances of a microfiltration membrane (0.2 µm) and an ultrafiltration (200 kDa) membrane were evaluated and optimized under different transmembrane pressures and crossflow velocities. Once the optimal operating conditions were determined, a pre-treatment including lactic acid acidification and centrifugation was applied to increase the permeate recovery. Finally, the efficiency of progressive freeze concentration for the treatment of the permeate obtained from the optimum conditions (UF 200 kDa with TMP of 3 bar, CFV of 1 m/s and lactic acid acidification) was evaluated at specific operating conditions (-5 °C and 600 rpm of stirring speed). Finally, 70% of phosphorus could be recovered from cheese whey using the coupled technology of the membrane system and freeze concentration. A phosphorus-rich product was obtained with high agronomic value, which constitutes a further step towards establishing a broader circular economy framework.

3.
Sci Total Environ ; 843: 156966, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760177

RESUMO

The salinisation of freshwater ecosystems is a global environmental problem that threatens biodiversity, ecosystem functioning and human welfare. The aim of this study was to investigate the potential impact of a realistic salinity gradient on the structure and functioning of freshwater biofilms. The salinity gradient was based on the real ion concentration of a mining effluent from an abandoned mine in Germany. We exposed biofilm from a pristine stream to 5 increasing salinities (3 to 100 g L-1) under controlled conditions in artificial streams for 21 days. We evaluated its functional (photosynthetic efficiency, nutrient uptake, and microbial respiration) and structural responses (community composition, algal biomass and diatom, cyanobacteria and green algae metrics) over time. Then we compared their responses with an unexposed biofilm used as control. The functionality and structure of the biofilm exposed to the different salinities significantly decreased after short-term and long-term exposure, respectively. The community composition shifted to a new stable state where the most tolerant species increased their abundances. At the same time, we observed an increase in the community tolerance (measured as Pollution-Induced Community Tolerance) along the salinity gradient. This study provides relevant information on the salt threshold concentrations that can substantially damage algal cells (i.e., between 15 and 30 g L-1). The results provide new insights regarding the response and adaptation of stream biofilm to salinity and its potential implications at the ecosystem level.


Assuntos
Diatomáceas , Rios , Biofilmes , Ecossistema , Humanos , Mineração , Rios/química
4.
Membranes (Basel) ; 12(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135869

RESUMO

The rapid growth of the livestock sector in some areas of Europe has caused an imbalance between the generation of livestock manure and the availability of agricultural soil for its direct application as a fertilizer. Since the transport of pig slurry to other areas with nutrient-deficient soils is costly from an economic point of view due to its high water content, the application of new technologies for the concentration of this waste is considered key for reducing management costs. Consequently, the main objective of this study was to demonstrate the potential of vibratory shear enhanced processing (VSEP) operated with reverse osmosis membranes to recover nutrients from the liquid fractions of pig slurry (LF-pig slurry) and digestate (LF-digestate) and obtain concentrated fertilizing products. Use of the VSEP unit permitted reductions in the water contents of the LF-pig slurry and LF-digestate, around 77% and 67%, respectively. Both VSEP concentrates were characterized by their significant nutrient contents and showed a nitrogen fertilizer replacement value similar to that of mineral fertilizer as demonstrated in a barley crop pot-test, although the salinity of the digestate concentrate was identified as a key limitation, negatively impacting the agronomic yield of the test crop.

5.
Aquat Toxicol ; 230: 105707, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302174

RESUMO

Potash abandoned mines cause severe environmental damage to their bordering environment, with significant impacts on freshwater ecosystems mostly through uncontrolled discharge of hypersaline effluents. This study aimed to evaluate the ecological impact caused by a hypersaline effluent from an abandoned potash mine (Menteroda, Germany) on freshwater biofilms and, specifically, on diatom communities. Biofilm from a pristine stream was exposed under controlled conditions in microcosms to a mining effluent (ME), and its structural (algal biomass, community composition, diatom metrics) and functional (photosynthetic activity, nutrient uptake) responses were evaluated over time and compared with unexposed biofilms used as control. Biofilm exposed to ME showed drastic functional responses after one day of exposure, with a significant decrease in photosynthetic efficiency and nutrient uptake, that were recovered over time. Biofilm exposed to ME showed a progressive increase in diatom metrics (abundance, density and growth rate) over time, compared to the control. However, a significant decrease in diatom species diversity, richness and cell size was also observed in biofilm exposed to ME. This study revealed that the ME affected the biofilm causing short-term functional responses, which were recovered simultaneously with a drastic diatom community structure shift.


Assuntos
Biofilmes/efeitos dos fármacos , Misturas Complexas , Diatomáceas/efeitos dos fármacos , Água Doce/química , Mineração , Poluentes Químicos da Água/toxicidade , Biofilmes/crescimento & desenvolvimento , Biomassa , Diatomáceas/crescimento & desenvolvimento , Ecossistema , Água Doce/microbiologia , Alemanha , Microbiota/efeitos dos fármacos , Salinidade , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 768: 144473, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33453535

RESUMO

The global increase of cyanobacterial blooms occurrence has been associated with the presence of compounds that generate earthy and musty odor in freshwater systems, among which geosmin stands out. The lack of information on the factors associated to geosmin production by benthic organisms has driven the development of this study, whose main goal is to determine the effects of nutrient concentration and DIN:SRP ratio on geosmin formation and release. The experiment was performed in 18 microcosms under controlled conditions for 21 days, using a natural biofilm suspension from Ter river (NE, Spain) to promote biofilm settlement. Six treatments were set crossing three DIN:SRP ratios (A = 4:1, B = 16:1 and C = 64:1) with two nutrient concentrations (Low and High). After 7 days of experiment, geosmin was detected in biofilm, being higher under high nutrient concentration and low DIN:SRP ratio conditions. In this treatment, geosmin in biofilm reached its maximum concentration at day 16 (3.8 ± 0.9 ng/mg), decreasing at the end of the experiment (21d) due to cyanobacteria detachment and geosmin release into the water (136 ± 6 ng/L). Overall, this experimental study showed that high nutrient concentration and low DIN:SRP ratio favored the Oscillatoria genus development within biofilm communities, generating the optimal conditions for geosmin production. The interaction between these two factors was demonstrated to be a potential driver of benthic geosmin production and release, and should be monitored and controlled in rivers exploited for drinking water purposes.


Assuntos
Naftóis , Odorantes , Biofilmes , Nutrientes , Odorantes/análise , Espanha
7.
Front Microbiol ; 12: 741750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790181

RESUMO

In recent decades, human activity coupled with climate change has led to a deterioration in the quality of surface freshwater. This has been related to an increase in the appearance of algal blooms, which can produce organic compounds that can be toxic or can affect the organoleptic characteristics of the water, such as its taste and odor. Among these latter compounds is geosmin, a metabolite produced by certain cyanobacteria that confers an earthy taste to water and which can be detected by humans at very low concentrations (nanogram per liter). The difficulty and cost of both monitoring the presence of this compound and its treatment is a problem for drinking water treatment companies, as the appearance of geosmin affects consumer confidence in the quality of the drinking water they supply. In this field study, the evaluation of four sampling sites with different physicochemical conditions located in the upper part of the Ter River basin, a Mediterranean river located in Catalonia (NE Spain), has been carried out, with the aim of identifying the main triggers of geosmin episodes. The results, obtained from 1 year of sampling, have made it possible to find out that: (i) land uses with a higher percentage of agricultural and industrial activity are related to high nutrient conditions in river water, (ii) these higher nutrient concentrations favor the development of benthic cyanobacteria, (iii) in late winter-early spring, when these cyanobacteria are subjected to both an imbalance of the dissolved inorganic nitrogen and soluble reactive phosphorus ratio, guided by a phosphorus concentration increase, and to cold-mild temperatures close to 10°C, they produce and release geosmin, and (iv) 1-2 weeks after cyanobacteria reach a high relative presence in the whole biofilm, an increase in geosmin concentration in water is observed, probably associated with the cyanobacteria detachment from cobbles and consequent cell lysis. These results could serve as a guide for drinking water treatment companies, indicating under what conditions they can expect the appearance of geosmin episodes and implement the appropriate treatment before it reaches consumers' tap.

8.
N Biotechnol ; 62: 60-67, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33516825

RESUMO

Polyhydroxyalkanoates (PHAs) are polyesters of significant interest due to their biodegradability and properties similar to petroleum-derived plastics, as well as the fact that they can be produced from renewable sources such as by-product streams. In this study, brewer's spent grain (BSG), the main by-product of the brewing industry, was subjected to a set of physicochemical pretreatments and their effect on the release of reducing sugars (RS) was evaluated. The RS obtained were used as a substrate for further PHA production in Burkholderia cepacia, Bacillus cereus, and Cupriavidus necator in liquid cultures. Although some pretreatments proved efficient in releasing RS (acid-thermal pretreatment up to 42.1 gRS L-1 and 0.77 gRS g-1 dried BSG), the generation of inhibitors in such scenarios likely affected PHA production compared with the process run without pretreatment (direct enzymatic hydrolysis of BSG). Thus, the maximum PHA accumulation from BSG hydrolysates was found in the reference case with 0.31 ±â€¯0.02 g PHA per g cell dried weight, corresponding to 1.13 ±â€¯0.06 g L-1 and a PHA yield of 23 ±â€¯1 mg g-1 BSG. It was also found that C. necator presented the highest PHA accumulation of the tested strains followed closely by B. cepacia, reaching their maxima at 48 h. Although BSG has been used as a source for other bioproducts, these results show the potential of this by-product as a no-cost raw material for producing PHAs in a waste valorization and circular economy scheme.


Assuntos
Bacillus cereus/metabolismo , Burkholderia cepacia/metabolismo , Cupriavidus necator/metabolismo , Grão Comestível/química , Poli-Hidroxialcanoatos/biossíntese , Grão Comestível/metabolismo , Poli-Hidroxialcanoatos/química
9.
Front Microbiol ; 10: 3002, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993033

RESUMO

Hydro-morphological alterations in water bodies caused by climate change and human activities affects the ecosystem functioning and generate important water quality problems. Some of these alterations can generate an increase in cyanobacterial blooms, which are associated with the appearance of bad taste and odorous compounds such as geosmin. The factors that trigger their production are still unclear, and this inability to predict geosmin episodes provokes economic problems for water supply companies. This study aims to evaluate the effects of water flow and light availability on biofilm development and intracellular geosmin formation. A mesocosm experiment was performed between February-April, 2019. The mesocosms were a set of 10 outdoor 3 m long flumes, with a continuous water supply from the Ter river (Catalonia, NE Spain). Two light intensities were established: natural light and light reduced to 80%, combined with five gradual water flows from 0.09 to 1.10 L/s. Water samples were taken to analyze nutrients, and biofilm samples, to analyze geosmin concentration, chlorophyll a and the community. Geosmin in biofilm was detected in those treatments in which Oscillatoria sp. appeared. The concentration of intracellular geosmin was higher at lower water flows (0.09 and 0.18 L/s), and the highest (2.12 mg/g) was found in the flume with the lowest water flow (0.09 L/s) and irradiation (20%). This flume was the one that presented a greater concentration of Oscillatoria sp. (21% of the community). It stands out that, when geosmin in biofilm was found, the dissolved inorganic nitrogen and soluble reactive phosphorus ratio decreased, from an average of 417:1 to 14:1. This was mainly due to an increase in inorganic phosphorus concentration generated by a change in the nutrient uptake capacity of the community's biofilm. The results obtained in this study indicated the potential implications for stream ecosystem management to control geosmin appearance. Likewise, they could be used as an early warning system, establishing that in times of drought, which lead to a general decrease in river water flow, the situation could be optimal for the appearance and development of geosmin producing cyanobacteria in low-flow areas near the river banks.

11.
Sci Total Environ ; 566-567: 1032-1041, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27312271

RESUMO

The rivers and streams of the world are becoming saltier due to human activities. In spite of the potential damage that salt pollution can cause on freshwater ecosystems, this is an issue that is currently poorly managed. Here we explored intraspecific differences in the sensitivity of freshwater fauna to two major ions (Cl(-) and SO4(2-)) using the net-spinning caddisfly Hydropsyche exocellata Dufour 1841 (Trichoptera, Hydropsychidae) as a model organism. We exposed H. exocellata to saline solutions (reaching a conductivity of 2.5mScm(-1)) with Cl(-):SO4(2-) ratios similar to those occurring in effluents coming from the meat, mining and paper industries, which release dissolved salts to rivers and streams in Spain. We used two different populations, coming from low and high conductivity streams. To assess toxicity, we measured sub-lethal endpoints: locomotion, symmetry of the food-capturing nets and oxidative stress biomarkers. According to biomarkers and net building, the population historically exposed to lower conductivities (B10) showed higher levels of stress than the population historically exposed to higher conductivities (L102). However, the differences between populations were not strong. For example, net symmetry was lower in the B10 than in the L102 only 48h after treatment was applied, and biomarkers showed a variety of responses, with no discernable pattern. Also, treatment effects were rather weak, i.e. only some endpoints, and in most cases only in the B10 population, showed a significant response to treatment. The lack of consistent differences between populations and treatments could be related to the high salt tolerance of H. exocellata, since both populations were collected from streams with relatively high conductivities. The sub-lethal effects tested in this study can offer an interesting and promising tool to monitor freshwater salinization by combining physiological and behavioural bioindicators.


Assuntos
Cloretos/toxicidade , Insetos/efeitos dos fármacos , Sulfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Resíduos Industriais/análise , Insetos/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Espanha , Testes de Toxicidade
12.
Adv Colloid Interface Sci ; 173: 1-11, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22405540

RESUMO

The structuring of water at soft solid surfaces remains an area of great interest to colloid science as a whole and has many applications in relation to colloid stability, foams, and wetting films as well as being central to membrane separations. Quantitatively calculating the structural components of thin layers of water and the interaction forces of hydrated molecules with the surface of pores through a layer of water having modified structure is one of the most important challenges in the physics of surface phenomenon. In this paper these effects are reviewed and discussed in relation to the confines of a capillary pore. Membrane nanofiltration is extremely complex and is dependent on the micro-hydrodynamics and interfacial events occurring at the membrane surface and within the membrane nanopores. There is significant debate as to the exact nature of these complex phenomena and rejection is typically attributed to a combination of steric and electrical effects. The electrical effects are less well understood and in particular the contribution of dielectric exclusion. A review of the two competing descriptions of dielectric exclusion is presented along with the theories currently used in modelling this phenomena. A series of rejection experiments of 0.01 M salt solutions at the membrane isoelectric point has been performed for the NF270 and NF99HF membranes. The dielectric constants inside the nanopore are calculated and these values were consistent for three of the salts studied, indicating that a simplistic model based on Born theory is accurate enough for engineering calculations and that ion solvation is most likely to be the more appropriate dielectric exclusion mechanism for true nanofiltration membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA