Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Res ; 93(5): 1216-1225, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35963885

RESUMO

BACKGROUND: Activation of microglia, increase in cortical neuron density, and reduction in GABAergic interneurons are some of the key findings in postmortem autism spectrum disorders (ASD) subjects. The aim of this study was to investigate how maternal immune activation (MIA) programs microglial phenotypes and abnormal neurogenesis in offspring mice. METHODS: MIA was induced by injection of lipopolysaccharide (LPS, i.p.) to pregnant mice at embryonic (E) day 12.5. Microglial phenotypes and neurogenesis were investigated between E15.5 to postnatal (P) day 21 by immunohistochemistry, flow cytometry, and cytokine array. RESULTS: MIA led to a robust increase in fetal and neonatal microglia in neurogenic regions. Homeostatic E15.5 and P4 microglia are heterogeneous, consisting of M1 (CD86+/CD206-) and mixed M1/M2 (CD86+/CD206+)-like subpopulations. MIA significantly reduced M1 but increased mixed M1/M2 microglia, which was associated with upregulation of numerous cytokines with pleotropic property. MIA resulted in a robust increase in Ki67+/Nestin+ and Tbr2+ neural progenitor cells in the subventricular zone (SVZ) of newborn mice. At juvenile stage, a male-specific reduction of Parvalbumin+ but increase in Reelin+ interneurons in the medial prefrontal cortex was found in MIA offspring mice. CONCLUSIONS: MIA programs microglia towards a pleotropic phenotype that may drive excessive neurogenesis in ASD patients. IMPACT: Maternal immune activation (MIA) alters microglial phenotypes in the brain of fetal and neonatal mouse offspring. MIA leads to excessive proliferation and overproduction of neural progenitors in the subventricular zone (SVZ). MIA reduces parvalbumin+ while increases Reelin+ interneurons in the prefrontal cortex. Our study sheds light on neurobiological mechanisms of abnormal neurogenesis in certain neurodevelopmental disorders, such as autism spectrum disorder (ASD).


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Camundongos , Animais , Masculino , Microglia , Transtorno do Espectro Autista/induzido quimicamente , Parvalbuminas/efeitos adversos , Citocinas , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA