RESUMO
BACKGROUND AND OBJECTIVE: COVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD. METHODS: We obtained lower AEC from 145 people from two independent cohorts, aged 2-89 years, Newcastle (n = 115) and Perth (n = 30), Australia. The Newcastle cohort was enriched with people with asthma (n = 37) and COPD (n = 38). Gene expression for ACE2 and other genes potentially associated with SARS-CoV-2 cell entry was assessed by qPCR, and protein expression was confirmed with immunohistochemistry on endobronchial biopsies and cultured AEC. RESULTS: Increased gene expression of ACE2 was associated with older age (P = 0.03) and male sex (P = 0.03), but not with pack-years smoked. When we compared gene expression between adults with asthma, COPD and healthy controls, mean ACE2 expression was lower in asthma patients (P = 0.01). Gene expression of furin, a protease that facilitates viral endocytosis, was also lower in patients with asthma (P = 0.02), while ADAM-17, a disintegrin that cleaves ACE2 from the surface, was increased (P = 0.02). ACE2 protein expression was also reduced in endobronchial biopsies from asthma patients. CONCLUSION: Increased ACE2 expression occurs in older people and males. Asthma patients have reduced expression. Altered ACE2 expression in the lower airway may be an important factor in virus tropism and may in part explain susceptibility factors and why asthma patients are not over-represented in those with COVID-19 complications.
Assuntos
Asma/genética , COVID-19/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Asma/epidemiologia , Asma/metabolismo , Austrália/epidemiologia , COVID-19/epidemiologia , COVID-19/metabolismo , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptidil Dipeptidase A/biossínteseRESUMO
In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.
Assuntos
Hiper-Reatividade Brônquica/tratamento farmacológico , Cloreto de Metacolina/administração & dosagem , Infecções por Orthomyxoviridae/complicações , Ovalbumina/imunologia , Pyroglyphidae/imunologia , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Hiper-Reatividade Brônquica/etiologia , Claudina-1/metabolismo , Regulação para Baixo , Feminino , Vírus da Influenza A/patogenicidade , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Ovalbumina/administração & dosagem , Resultado do TratamentoRESUMO
Birth prior to term interrupts the normal development of the respiratory system and consequently results in poor respiratory outcomes that persist throughout childhood. The mechanisms underpinning these poor respiratory outcomes are not well understood, but intrinsic abnormalities within the airway epithelium may be a contributing factor. Current evidence suggests that the airway epithelium is both structurally and functionally abnormal after preterm birth, with reports of epithelial thickening and goblet cell hyperplasia in addition to increased inflammation and apoptosis in the neonatal intensive care unit. However, studies focusing on the airway epithelium are limited and many questions remain unanswered; including whether abnormalities are a direct result of interrupted development, a consequence of exposure to inflammatory stimuli in the perinatal period or a combination of the two. In addition, the difficulty of accessing airway tissue has resulted in the majority of evidence being collected in the pre-surfactant era which may not reflect contemporary preterm birth. This review examines the consequences of preterm birth on the airway epithelium and explores the clinical relevance of currently available models whilst highlighting the need to develop a clinically relevant in vitro model to help further our understanding of the airway epithelium in preterm birth.
Assuntos
Apoptose , Displasia Broncopulmonar/embriologia , Inflamação , Nascimento Prematuro , Mucosa Respiratória/embriologia , Displasia Broncopulmonar/imunologia , Displasia Broncopulmonar/metabolismo , Corioamnionite/imunologia , Corioamnionite/metabolismo , Feminino , Células Caliciformes/patologia , Humanos , Hiperplasia , Recém-Nascido , Recém-Nascido Prematuro , Infecções/imunologia , Infecções/metabolismo , Unidades de Terapia Intensiva Neonatal , Lesão Pulmonar/etiologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/metabolismo , Oxigenoterapia/efeitos adversos , Respiração com Pressão Positiva/efeitos adversos , Gravidez , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Ressuscitação/efeitos adversosRESUMO
BACKGROUND: Apically located tight junctions in airway epithelium perform a fundamental role in controlling macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in barrier integrity, which subsequently facilitates entry of potential bacterial and other pathogens into the host. Furthermore, there is emerging evidence that the barrier integrity of the airway in certain airway inflammatory diseases may be altered. However, there is little consensus on the way this is assessed and measured and the type of cells used to achieve this. METHODS: Here, we assessed four fixation methods including; (i) 4% (v/v) paraformaldehyde; (ii) 100% methanol; (iii) acetone or; (iv) 1:1 methanol: acetone. Pre-extraction with Triton X-100 was also performed and assessed on cells prior to fixation with either methanol or paraformaldehyde. Cells were also permeabilized with 0.1% (v/v) Saponin in 1× TBS following fixation and subsequently stained for tight junction proteins. Confocal microscopy was then used to visualise, compare and evaluate staining intensity of the tight junctional complexes in order to determine a standardised workflow of reproducible staining. RESULTS: Positive staining was observed following methanol fixation for claudin-1 and ZO-1 tight junction proteins but no staining was detected for occludin in 16HBE14o- cells. Combinatorial fixation with methanol and acetone also produced consistent positive staining for both occludin and ZO-1 tight junction proteins in these cells. When assessed using primary cells cultured at air-liquid interface, similar positive staining for claudin-1 and ZO-1 was observed following methanol fixation, while similar positive staining for occludin and ZO-1 was observed following the same combinatorial fixation with methanol and acetone. CONCLUSIONS: The present study demonstrates the importance of a personalised approach to optimise staining for the visualisation of different tight junction proteins. Of significance, the workflow, once optimised, can readily be translated into primary airway epithelial cell air-liquid interface cultures where it can be used to assess barrier integrity in chronic lung diseases.
RESUMO
Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.
Assuntos
Fibrose Cística/enzimologia , Células Epiteliais/efeitos dos fármacos , Elastase de Leucócito/farmacologia , Regeneração/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , alfa 1-Antitripsina/farmacologia , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/patologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Mediadores da Inflamação/metabolismo , Masculino , Fenótipo , Mucosa Respiratória/enzimologia , Mucosa Respiratória/patologia , Fatores de TempoRESUMO
RATIONALE: No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. AIM OF THE STUDY: To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. MATERIALS AND METHODS: Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID50) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. RESULTS: HRV-1B infection affected viability that was both time and TCID50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID50, while a significant decrease in all three TJ protein expressions occurred at higher TCID50. Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. CONCLUSION: HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.
RESUMO
BACKGROUND AND OBJECTIVE: Evidence into the role of TGF-ß1 in airway epithelial repair in asthma is still controversial. This study tested the hypothesis that the reduced TGF-ß1 levels previously observed in paediatric asthmatic airway epithelial cells directly contribute to the dysregulated repair seen in these cells. METHODS: Primary airway epithelial cells (pAEC) from children with asthma (n = 16) and non-asthmatic subjects (n = 20) were isolated, and subcultured for investigation of TGF-ß1 gene and protein via quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Expression of other associated genes such as integrins αvß6, αvß8 and MT1-MMP were also tested. Small interfering RNA (siRNA) was employed to assess the role of TGF-ß1 during wound repair. RESULTS: TGF-ß1 gene and protein expression were significantly downregulated in asthmatic pAEC over the course of repair, compared with cells from non-asthmatic children. Messenger RNA (mRNA) expression of TGF-ß1 was also directly implicated in non-asthmatic and asthmatic pAEC proliferation over their quiescent counterparts. Small interfering RNA-mediated knockdown of TGF-ß1 compromised repair in non-asthmatic pAEC and exacerbated the dysregulated repair seen in asthmatic pAEC. Expression of major TGF-ß1 activators of epithelial cells, integrin αvß6 and αvß8 was also measured and there was no difference in αvß6 gene expression between the two cohorts. Although integrin αvß8 gene expression was significantly higher in asthmatic pAEC, the expression of MT1-MMP (MMP14) which facilitates the αvß8 mediated TGF-ß1 activation was significantly downregulated. CONCLUSION: Our data has highlighted the importance of TGF-ß1 in pAEC wound repair in vitro. The significantly lower levels seen in asthmatic pAEC subsequently contributes to the dysregulated repair observed in these cells.
Assuntos
Remodelação das Vias Aéreas/fisiologia , Células Epiteliais Alveolares/metabolismo , Asma , Fator de Crescimento Transformador beta1/metabolismo , Células Epiteliais Alveolares/patologia , Asma/metabolismo , Asma/patologia , Proliferação de Células , Criança , Feminino , Humanos , Masculino , Metaloproteinase 14 da Matriz/metabolismo , RNA Mensageiro/metabolismo , Reepitelização/fisiologia , Estatística como AssuntoRESUMO
Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis.Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis.A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis.Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease.
Assuntos
Bronquiectasia/enzimologia , Fibrose Cística/complicações , Elastase de Leucócito/metabolismo , Metaloproteinases da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Bronquiectasia/complicações , Líquido da Lavagem Broncoalveolar/química , Criança , Pré-Escolar , Fibrose Cística/enzimologia , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Tomografia Computadorizada por Raios XRESUMO
AIM OF THE STUDY: The bronchial brushing technique presents an opportunity to establish a gold standard in vitro model of Cystic Fibrosis (CF) airway disease. However, unique obstacles exist when establishing CF airway epithelial cells (pAECCF). We aimed to identify determinants of culture success through retrospective analysis of a program of routinely brushing children with CF. MATERIALS AND METHODS: Anaesthetised children (CF and non-CF) had airway samples taken which were immediately processed for cell culture. Airway data for the CF cohort was obtained from clinical records and the AREST CF database. RESULTS: Of 260 brushings processed for culture, 114 (43.8%) pAECCF successfully cultured to passage one (P1) and 63 (24.2% of total) progressed to passage two (P2). However, >80% of non-CF specimens (pAECnon-CF) cultured to P2 from similar cell numbers. Within the CF cohort, specimens successfully cultured to P2 had a higher initial cell count and lower proportion of severe CF mutation phenotype than those that did not proliferate beyond initial seeding. Elevated airway IL-8 concentration was also negatively associated with culture establishment. Contamination by opportunistic pathogens was observed in 81 (31.2% of total) cultures and brushings from children with lower respiratory tract infections were more likely to co-culture contaminating flora. CONCLUSIONS: Lower passage rates of pAECCF cultures uniquely contrasts with pAECnon-CF despite similar cell numbers. An equivalent establishment rate of CF nasal epithelium reported elsewhere, significant associations to CFTR mutation phenotype, elevated airway IL-8 and opportunistic pathogens all suggest this is likely related to the CF disease milieu.
Assuntos
Técnicas de Cultura de Células/estatística & dados numéricos , Fibrose Cística/patologia , Mucosa Respiratória/patologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Criança , Pré-Escolar , Fibrose Cística/enzimologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Técnicas Citológicas , Feminino , Humanos , Lactente , Inflamação/enzimologia , Interleucina-8/metabolismo , Elastase de Leucócito/metabolismo , Masculino , Mutação , Estudos Retrospectivos , Manejo de EspécimesRESUMO
BACKGROUND AND OBJECTIVE: Purchase and disinfection costs together with medication delivery factors may influence the choice of drug delivery options. This study assessed salbutamol delivery habits used in respiratory laboratories and quantified the delivered salbutamol dose of locally available spacers. METHODS: An online survey was used to obtain data on disinfection processes, costs and delivery device choices. The delivered dose of six commercial spacers was assessed. Particle size distribution of salbutamol (Ventolin, GSK, 100µg/actuation) from six spacers of each type was measured by quantifying the amount of drug (µg) deposited on each stage of an Anderson Cascade Impactor (ACI) using UV spectrophotometry. Clinical conditions were simulated using a flow volume simulator (FVS) and delivery of salbutamol via a pressurized metered dose inhaler and spacer to a low-resistance filter was measured. RESULTS: Fifty survey responses were obtained, with 37 (74%) using ≥1 type of spacer of which 92% processed single use spacers. The most commonly used spacers were Volumatic (n=24), Breath-a-tech (n=8) and Space Chamber (n=7). The median disinfection cost was $2.45. Delivered salbutamol dose varied significantly and ranged from 16.98 to 38.28 µg with the ACI and 22.56 to 58.82 µg with the FVS. Using the FVS, small-volume spacers delivered similar doses (22.56 to 28.46 µg), while large-volume spacers delivery was more varied (24.31 to 58.82 µg). CONCLUSIONS: The majority of respiratory laboratories had not updated re-processing policies to comply with new regulations. The delivered salbutamol dose varied significantly and this might effect the choice of preferred spacer type.
Assuntos
Albuterol/administração & dosagem , Broncodilatadores/administração & dosagem , Espaçadores de Inalação , Administração por Inalação , Albuterol/economia , Austrália , Broncodilatadores/economia , Pesquisas sobre Atenção à Saúde , Humanos , Masculino , Inaladores Dosimetrados , Nova Zelândia , Tamanho da PartículaRESUMO
Asthma is the commonest medical cause for hospital admission for children in Australia, affects more than 300 million people worldwide, and is incurable, severe in large number and refractory to treatment in many. However, there have been no new significant treatments despite intense research and billions of dollars. The advancement in our understanding in this disease has been limited due to its heterogeneity, genetic complexity and has severely been hampered particularly in children by the difficulty in obtaining relevant target organ tissue. This review attempts to provide an overview of the currently used and recently developed/adapted techniques used to obtain lung tissue with specific reference to the airway epithelium.
Assuntos
Remodelação das Vias Aéreas , Asma/patologia , Brônquios/patologia , Broncoscopia/métodos , Asma/diagnóstico , Austrália , Biópsia , Lavagem Broncoalveolar , Células Epiteliais/patologia , HumanosRESUMO
Evidence from animal models demonstrate that intrauterine growth restriction (IUGR) alters airway structure and function which may affect susceptibility to disease. Airway inflammation and dysregulated epithelial barrier properties are features of asthma which have not been examined in the context of IUGR. This study used a maternal hypoxia-induced IUGR mouse model to assess lung-specific and systemic inflammation and airway epithelial tight junctions (TJs) protein expression. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to 17.5 (IUGR group; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A Control group was housed under normoxic conditions throughout pregnancy. Offspring weights were recorded at 2 and 8 weeks of age and euthanized for bronchoalveolar lavage (BAL) and peritoneal cavity fluid collection for inflammatory cells counts. From a separate group of mice, right lungs were collected for Western blotting of TJs proteins. IUGR offspring had greater inflammatory cells in the BAL fluid but not in peritoneal fluid compared with Controls. At 8 weeks of age, interleukin (IL)-2, IL-13, and eotaxin concentrations were higher in male IUGR compared with male Control offspring but not in females. IUGR had no effect on TJs protein expression. Maternal hypoxia-induced IUGR increases inflammatory cells in the BAL fluid of IUGR offspring with no difference in TJs protein expression. Increased cytokine release, specific to the lungs of IUGR male offspring, indicates that both IUGR and sex can influence susceptibility to airway disease.
Assuntos
Asma/etiologia , Epitélio/metabolismo , Retardo do Crescimento Fetal , Proteínas de Junções Íntimas/metabolismo , Animais , Asma/metabolismo , Líquido da Lavagem Broncoalveolar/química , Citocinas/análise , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Masculino , Camundongos Endogâmicos BALB C , Gravidez , Fatores SexuaisRESUMO
The epithelium is integral to the protection of many different biological systems and for the maintenance of biochemical homeostasis. Emerging evidence suggests that particular children have epithelial vulnerabilities leading to dysregulated barrier function and integrity, that resultantly contributes to disease pathogenesis. These epithelial vulnerabilities likely develop in utero or in early life due to various genetic, epigenetic and environmental factors. Although various epithelia are uniquely structured with specific function, prevalent allergic-type epithelial diseases in children potentially have common or parallel disease processes. These include inflammation and immune response dysregulation stemming from atypical epithelial barrier function and integrity. Two diseases where aetiology and pathogenesis are potentially linked to epithelial vulnerabilities include Paediatric Asthma and Eosinophilic Oesophagitis (EoE). For example, rhinovirus C (RV-C) is a known risk factor for paediatric asthma development and is known to disrupt respiratory epithelial barrier function causing acute inflammation. In addition, EoE, a prevalent atopic condition of the oesophageal epithelium, is characterised by similar innate immune and epithelial responses to viral injury. This review examines the current literature and identifies the gaps in the field defining viral-induced effects on a vulnerable respiratory epithelium and resulting chronic inflammation, drawing from knowledge generated in acute wheezing illness, paediatric asthma and EoE. Besides highlighting the importance of epithelial structure and barrier function in allergic disease pathogenesis regardless of specific epithelial sub-types, this review focuses on the importance of examining other parallel allergic-type disease processes that may uncover commonalities driving disease pathogenesis. This in turn may be beneficial in the development of common therapeutics for current clinical management and disease prevention in the future.
Assuntos
Asma/virologia , Esofagite Eosinofílica/virologia , Infecções por Picornaviridae , Mucosa Respiratória/virologia , Rhinovirus , Criança , Humanos , Sons RespiratóriosRESUMO
The airway epithelium of children with wheeze is characterized by defective repair that contributes to disease pathobiology. Dysregulation of developmental processes controlled by Notch has been identified in chronic asthma. However, its role in airway epithelial cells of young children with wheeze, particularly during repair, is yet to be determined. We hypothesized that Notch is dysregulated in primary airway epithelial cells (pAEC) of children with wheeze contributing to defective repair. This study investigated transcriptional and protein expression and function of Notch in pAEC isolated from children with and without wheeze. Primary AEC of children with and without wheeze were found to express all known Notch receptors and ligands, although pAEC from children with wheeze expressed significantly lower NOTCH2 (10-fold, p = 0.004) and higher JAG1 (3.5-fold, p = 0.002) mRNA levels. These dysregulations were maintained in vitro and cultures from children with wheeze displayed altered kinetics of both NOTCH2 and JAG1 expression during repair. Following Notch signaling inhibition, pAEC from children without wheeze failed to repair (wound closure rate of 76.9 ± 3.2%). Overexpression of NOTCH2 in pAEC from children with wheeze failed to rescue epithelial repair following wounding. This study illustrates the involvement of the Notch pathway in airway epithelial wound repair in health and disease, where its dysregulation may contribute to asthma development.
RESUMO
BACKGROUND: Aberrant responses by the cystic fibrosis airway epithelium during viral infection may underly the clinical observations. Whether CFTR modulators affect antiviral responses by CF epithelia is presently unknown. We tested the hypothesis that treatment of CF epithelial cells with ivacaftor (Iva) or ivacaftor/lumacaftor (Iva/Lum) would improve control of rhinovirus infection. METHODS: Nineteen CF epithelial cultures (10 homozygous for p.Phe508del as CFTR Class 2, 9 p.Phe508del/p.Gly551Asp as Class 3) were infected with rhinovirus 1B at multiplicity of infection 12 for 24 h. Culture RNA and supernatants were harvested to assess gene and protein expression respectively. RESULTS: RNA-seq analysis comparing rhinovirus infected cultures to control identified 796 and 629 differentially expressed genes for Class 2 and Class 3, respectively. This gene response was highly conserved when cells were treated with CFTR modulators and were predicted to be driven by the same interferon-pathway transcriptional regulators (IFNA, IFNL1, IFNG, IRF7, STAT1). Direct comparisons between treated and untreated infected cultures did not yield any differentially expressed genes for Class 3 and only 68 genes for Class 2. Changes were predominantly related to regulators of lipid metabolism and inflammation, aspects of epithelial biology known to be dysregulated in CF. In addition, CFTR modulators did not affect viral copy number, or levels of pro-inflammatory cytokines produced post-infection. CONCLUSIONS: Though long-term clinical data is not yet available, results presented here suggest that first generation CFTR modulators do not interfere with core airway epithelial responses to rhinovirus infection. Future work should investigate the latest triple modulation therapies.
Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Resfriado Comum/virologia , Fibrose Cística/genética , Quinolonas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Rhinovirus , Células Cultivadas , Resfriado Comum/complicações , Fibrose Cística/complicações , Combinação de Medicamentos , Humanos , Mucosa Respiratória/citologiaRESUMO
BACKGROUND: Dysregulated airway epithelial repair following injury is a proposed mechanism driving posttransplant bronchiolitis obliterans (BO), and its clinical correlate bronchiolitis obliterans syndrome (BOS). This study compared gene and cellular characteristics of injury and repair in large (LAEC) and small (SAEC) airway epithelial cells of transplant patients. METHODS: Subjects were recruited at the time of routine bronchoscopy posttransplantation and included patients with and without BOS. Airway epithelial cells were obtained from bronchial and bronchiolar brushing performed under radiological guidance from these patients. In addition, bronchial brushings were also obtained from healthy control subjects comprising of adolescents admitted for elective surgery for nonrespiratory-related conditions. Primary cultures were established, monolayers wounded, and repair assessed (±) azithromycin (1 µg/mL). In addition, proliferative capacity as well as markers of injury and dysregulated repair were also assessed. RESULTS: SAEC had a significantly dysregulated repair process postinjury, despite having a higher proliferative capacity than large airway epithelial cells. Addition of azithromycin significantly induced repair in these cells; however, full restitution was not achieved. Expression of several genes associated with epithelial barrier repair (matrix metalloproteinase 7, matrix metalloproteinase 3, the integrins ß6 and ß8, and ß-catenin) were significantly different in epithelial cells obtained from patients with BOS compared to transplant patients without BOS and controls, suggesting an intrinsic defect. CONCLUSIONS: Chronic airway injury and dysregulated repair programs are evident in airway epithelium obtained from patients with BOS, particularly with SAEC. We also show that azithromycin partially mitigates this pathology.
Assuntos
Azitromicina/farmacologia , Bronquiolite Obliterante/prevenção & controle , Células Epiteliais/efeitos dos fármacos , Rejeição de Enxerto/prevenção & controle , Transplante de Pulmão/efeitos adversos , Adolescente , Adulto , Remodelação das Vias Aéreas/efeitos dos fármacos , Aloenxertos/citologia , Aloenxertos/diagnóstico por imagem , Aloenxertos/patologia , Azitromicina/uso terapêutico , Brônquios/citologia , Brônquios/diagnóstico por imagem , Brônquios/patologia , Bronquiolite Obliterante/diagnóstico , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/patologia , Broncoscopia , Estudos de Casos e Controles , Células Cultivadas , Criança , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/patologia , Feminino , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Regeneração/efeitos dos fármacos , Transplante Homólogo , Adulto JovemRESUMO
Abnormal wound repair has been observed in the airway epithelium of patients with chronic respiratory diseases, including asthma. Therapies focusing on repairing vulnerable airways, particularly in early life, present a potentially novel treatment strategy. We report defective lower airway epithelial cell repair to strongly associate with common pre-school-aged and school-aged wheezing phenotypes, characterized by aberrant migration patterns and reduced integrin α5ß1 expression. Next generation sequencing identified the PI3K/Akt pathway as the top upstream transcriptional regulator of integrin α5ß1, where Akt activation enhanced repair and integrin α5ß1 expression in primary cultures from children with wheeze. Conversely, inhibition of PI3K/Akt signaling in primary cultures from children without wheeze reduced α5ß1 expression and attenuated repair. Importantly, the FDA-approved drug celecoxib - and its non-COX2-inhibiting analogue, dimethyl-celecoxib - stimulated the PI3K/Akt-integrin α5ß1 axis and restored airway epithelial repair in cells from children with wheeze. When compared with published clinical data sets, the identified transcriptomic signature was also associated with viral-induced wheeze exacerbations highlighting the clinical potential of such therapy. Collectively, these results identify airway epithelial restitution via targeting the PI3K-integrin α5ß1 axis as a potentially novel therapeutic avenue for childhood wheeze and asthma. We propose that the next step in the therapeutic development process should be a proof-of-concept clinical trial, since relevant animal models to test the crucial underlying premise are unavailable.
Assuntos
Asma/metabolismo , Movimento Celular , Mucosa Respiratória/metabolismo , Sons Respiratórios , Transdução de Sinais , Adolescente , Asma/patologia , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Integrina alfa5beta1/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mucosa Respiratória/patologiaRESUMO
BACKGROUND: Mutations in the cystic fibrosis transmembrane regulator (CFTR) gene can reduce function of the CFTR ion channel activity and impair cellular chloride secretion. The gold standard method to assess CFTR function of ion transport using the Ussing chamber requires a high number of airway epithelial cells grown at air-liquid interface, limiting the application of this method for high throughput screening of potential therapeutic compounds in primary airway epithelial cells (pAECs) featuring less common CFTR mutations. This study assessed an alternative approach, using a small scale halide assay that can be adapted for a personalized high throughput setting to analyze CFTR function of pAEC. METHODS: Pediatric pAECs derived from children with CF (pAECCF) were established and expanded as monolayer cultures, before seeding into 96-well plates for the halide assay. Cells were then transduced with an adenoviral construct containing yellow fluorescent protein (eYFP) reporter gene, alone or in combination with either wild-type CFTR (WT-CFTR) or p.Phe508del CFTR. Four days post transduction, cells were stimulated with forskolin and genistein, and assessed for quenching of the eYFP signal following injection of iodide solution into the assay media. RESULTS: Data showed that pAECCF can express eYFP at high efficiency following transduction with the eYFP construct. The halide assay was able to discriminate functional restoration of CFTR in pAECCF treated with either WT-CFTR construct or the positive controls syntaxin 8 and B-cell receptor-associated protein 31 shRNAs. SIGNIFICANCE: The current study demonstrates that the halide assay can be adapted for pediatric pAECCF to evaluate restoration of CFTR function. With the ongoing development of small molecules to modulate the folding and/or activity of various mutated CFTR proteins, this halide assay presents a small-scale personalized screening platform that could assess therapeutic potential of molecules across a broad range of CFTR mutations.
Assuntos
Brônquios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/fisiopatologia , Fenilalanina/química , Traqueia/metabolismo , Adenoviridae/genética , Brônquios/citologia , Células Cultivadas , Criança , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Vetores Genéticos , Humanos , Transporte Proteico , Traqueia/citologia , Transdução GenéticaRESUMO
Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.
Assuntos
Mucosa Respiratória/citologia , Animais , Asma/patologia , Asma/fisiopatologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Técnicas de Reprogramação Celular , Pré-Escolar , Fibrose Cística/patologia , Fibrose Cística/fisiopatologia , Feminino , Fibroblastos , Humanos , Masculino , Camundongos , Mucosa Respiratória/patologia , Mucosa Respiratória/fisiopatologiaRESUMO
BACKGROUND: Output from spacers (or valved holding chambers) is sensitive to changes in breathing pattern. Different spacers have unique characteristics that may influence breathing. A method used for breathing simulation, where the simulated breathing can be recorded on subjects while they are using spacers, may allow for more accurate in vitro estimation of drug delivery in specific populations, using specific spacers. METHODS: A flow chamber was used to record breathing while salbutamol was administered to two adult subjects through different spacers. Each subject performed a series of breathing patterns over a range of different inhalation volumes and flows. Salbutamol "inhaled" by subjects was captured on inspiratory filters and quantified by ultraviolet spectrophotometry. Recorded breathing patterns were simulated and ex vivo drug delivery was compared to in vitro drug delivery. Three equipment configurations were used to validate different aspects of the methodology. Configuration 1: breathing recorded by pneumotachometer placed directly between a human subject and the spacer. Breathing simulation performed with an identical setup. Configuration 2: spacer enclosed within a flow-chamber while breathing was recorded. Breathing simulation performed with an identical setup. Configuration 3: spacer enclosed in flow chamber to record breathing, but not when simulating breathing. In each configuration, the ex vivo and in vitro (simulated) filter doses were compared. RESULTS: Configuration 1: the median difference between ex vivo and in vitro filter doses was 0.4% (range: -12.2 to 6.9%). Configuration 2: the median difference was -2.3% (range: -9.0 to 5.0%). Configuration 3: the median difference was 1.7% (range: -11.5 to 3.9%). CONCLUSION: Our results indicate that in vitro simulated drug delivery using this method of recording using a flow chamber, closely approximates ex vivo total drug delivery. This technique allows for recording of breathing on patients while they are using spacers, with minimum increase in dead space or resistance, and no physical alteration in the patient-device interface.