Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Orthod ; 51(1): 41-52, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37646245

RESUMO

OBJECTIVE: To compare the stress distribution and total strain applied to the dentition, periodontal ligament (PDL) and cortical and trabecular bones by three Class II correctors using finite element analysis. DESIGN: Three-dimensional analysis of stresses and total strain of the dentition with three Class II correctors. SETTING: Computational study. METHODS: Three-dimensional finite element models of Class II elastics, the Forsus Fatigue Resistant Device (FRD) and the Carriere Motion Appliance (CMA) were constructed from a cone-beam computed tomography (CBTC) image of an orthodontic Class II patient. The distribution of stress (von Mises and principal stress) and the total strain (mm) in maxillo-mandibular dentition, PDL, cortical and trabecular bone were analysed. RESULTS: The highest von Mises yield and the maximum principal stress in the three models were found at the teeth, followed by the cortical bone, trabecular bone and PDL. The maximum stress and total deformation were located at the upper canines and lower molars in the Class II elastics and CMA models, in the upper first molars in the Forsus FRD and CMA, and in the lower first premolars in the Forsus FRD. In addition, stress was distributed in the anterior and posterior regions of the teeth, and the total deformation was found in the distal direction in the upper arch and in the mesial direction in the lower arch. CONCLUSION: The stress concentrations in the three models were located close to the active components of each appliance, producing specific patterns of stress distribution and displacement that should be taken into account when planning the type of appliance to be used for the correction of the Class II malocclusion.


Assuntos
Má Oclusão Classe II de Angle , Dente , Humanos , Análise de Elementos Finitos , Má Oclusão Classe II de Angle/diagnóstico por imagem , Má Oclusão Classe II de Angle/terapia , Dente Molar/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos
2.
Appl Microbiol Biotechnol ; 106(17): 5551-5562, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906439

RESUMO

Late embryogenesis abundant (LEA) proteins are hydrophilic proteins that lack a well-ordered tertiary structure and accumulate to high levels in response to water deficit, in organisms such as plants, fungi, and bacteria. The mechanisms proposed to protect cellular structures and enzymes are water replacement, ion sequestering, and membrane stabilization. The activity of some proteins has a limited shelf-life due to instability that can be caused by their structure or the presence of a stress condition that limits their activity; several LEA proteins have been shown to behave as cryoprotectants in vitro. Here, we report a group1 LEA from Azotobacter vinelandii AvLEA1, capable of conferring protection to lactate dehydrogenase, catechol dioxygenase, and Baylase peroxidase against freeze-thaw treatments, desiccation, and oxidative damage, making AvLEA a promising biological stabilizer reagent. This is the first evidence of protection provided by this LEA on enzymes with biotechnological potential, such as dioxygenase and peroxidase under in vitro stress conditions. Our results suggest that AvLEA could act as a molecular chaperone, or a "molecular shield," preventing either dissociation or antiaggregation, or as a radical scavenger, thus preventing damage to these target enzymes during induced stress. KEY POINTS: • This work expands the basic knowledge of the less-known bacterial LEA proteins and their in vitro protection potential. • AvLEA is a bacterial protein that confers in vitro protection to three enzymes with different characteristics and oligomeric arrangement. • The use of AvLEA as a stabilizer agent could be further explored using dioxygenase and peroxidase in bioremediation treatments. AvLEA1 protects against freeze-thaw treatments, desiccation, and oxidative damage on three different enzymes with biotechnological potential.


Assuntos
Proteínas de Bactérias , Dioxigenases , Desenvolvimento Embrionário , Peroxidases , Proteínas de Plantas , Água
3.
Appl Microbiol Biotechnol ; 105(19): 7171-7185, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34515846

RESUMO

Marine ecosystems are some of the most adverse environments on Earth and contain a considerable portion of the global bacterial population, and some of these bacterial species play pivotal roles in several biogeochemical cycles. Marine bacteria have developed different molecular mechanisms to address fluctuating environmental conditions, such as changes in nutrient availability, salinity, temperature, pH, and pressure, making them attractive for use in diverse biotechnology applications. Although more than 99% of marine bacteria cannot be cultivated with traditional microbiological techniques, several species have been successfully isolated and grown in the laboratory, facilitating investigations of their biotechnological potential. Some of these applications may contribute to addressing some current global problems, such as environmental contamination by hydrocarbons and synthetic plastics. In this review, we first summarize and analyze recently published information about marine bacterial diversity. Then, we discuss new literature regarding the isolation and characterization of marine bacterial strains able to degrade hydrocarbons and petroleum-based plastics, and species able to produce biosurfactants. We also describe some current limitations for the implementation of these biotechnological tools, but also we suggest some strategies that may contribute to overcoming them. KEY POINTS: • Marine bacteria have a great metabolic capacity to degrade hydrocarbons in harsh conditions. • Marine environments are an important source of new bacterial plastic-degrading enzymes. • Secondary metabolites from marine bacteria have diverse potential applications in biotechnology.


Assuntos
Ecossistema , Plásticos , Bactérias/genética , Biodegradação Ambiental , Biotecnologia , Hidrocarbonetos
4.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445394

RESUMO

Cytotoxic effects of cannabidiol (CBD) and tamoxifen (TAM) have been observed in several cancer types. We have recently shown that CBD primarily targets mitochondria, inducing a stable mitochondrial permeability transition pore (mPTP) and, consequently, the death of acute lymphoblastic leukemia (T-ALL) cells. Mitochondria have also been documented among cellular targets for the TAM action. In the present study we have demonstrated a synergistic cytotoxic effect of TAM and CBD against T-ALL cells. By measuring the mitochondrial membrane potential (ΔΨm), mitochondrial calcium ([Ca2+]m) and protein-ligand docking analysis we determined that TAM targets cyclophilin D (CypD) to inhibit mPTP formation. This results in a sustained [Ca2+]m overload upon the consequent CBD administration. Thus, TAM acting on CypD sensitizes T-ALL to mitocans such as CBD by altering the mitochondrial Ca2+ homeostasis.


Assuntos
Cálcio/metabolismo , Canabidiol/farmacologia , Peptidil-Prolil Isomerase F/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Tamoxifeno/farmacologia , Linhagem Celular Tumoral , Peptidil-Prolil Isomerase F/química , Sinergismo Farmacológico , Homeostase/efeitos dos fármacos , Humanos , Células Jurkat , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Conformação Proteica
5.
J Food Sci Technol ; 58(12): 4654-4665, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34629530

RESUMO

Mexico is an extensively diverse country with a wide variety of wild species of blackberries (Rubus spp.), which are rich in bioactive compounds, however, these fruits are underutilized. Fermentation is a process that transforms the chemical compounds of fruits and increases nutraceutical properties. This study aimed to determine the physicochemical changes and the bioactive compounds profile that take place during the fermentation of wild blackberries using yeast EC 1118 and to evaluate its relationship with antioxidant activity (AOx). The results indicated that after 96 h of fermentation the content of carbohydrates (56%), total phenolic compounds (37%), and anthocyanins (22%), decreased, respectively. The physicochemical parameters showed statistic differences (p ≤ 0.05) at the endpoint of fermentation. The diversity of fatty acids was increased (55%), compared with unfermented blackberries. The modification of carbohydrates, anthocyanins, catechin, gallic and ellagic acid profiles were also monitored performing chromatographic techniques. The AOx, determined by ORAC and DPPH assays, showed the highest results for ORAC at 96 h increased a 140.2%, while DPPH values enhanced a 36.6% at 48 h of bioprocessing. Strong positive correlations were found between fermentation time and DPPH values (r = 0.8131), between ORAC and gallic acid content (r = 0.8688), and between anthocyanin content and pH (r = 0.9126). The fermentation of wild blackberries with EC 1118 yeast represents an alternative for development and formulation of potential ingredients for functional foods. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s13197-020-04953-x).

6.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379175

RESUMO

Anticancer activity of different phenols is documented, but underlying mechanisms remain elusive. Recently, we have shown that cannabidiol kills the cells of acute lymphoblastic leukemia (ALL) by a direct interaction with mitochondria, with their consequent dysfunction. In the present study, cytotoxic effects of several phenolic compounds against human the T-ALL cell line Jurkat were tested by means of resazurin-based metabolic assay. To unravel underlying mechanisms, mitochondrial membrane potential (∆Ψm) and [Ca2+]m measurements were undertaken, and reactive oxygen species generation and cell death were evaluated by flow cytometry. Three out of eight tested phenolics, cannabidiol, curcumin and quercetin, which displayed a significant cytotoxic effect, also dissipated the ∆Ψm and induced a significant [Ca2+]m increase, whereas inefficient phenols did not. Dissipation of the ∆Ψm by cannabidiol was prevented by cyclosporine A and reverted by Ru360, inhibitors of the permeation transition pore and mitochondrial Ca2+ uniporter, respectively. Ru360 prevented the phenol-induced [Ca2+]m rise, but neither cyclosporine A nor Ru360 affected the curcumin- and quercetin-induced ∆Ψm depolarization. Ru360 impeded the curcumin- and cannabidiol-induced cell death. Thus, all three phenols exert their antileukemic activity via mitochondrial Ca2+ overload, whereas curcumin and quercetin suppress the metabolism of leukemic cells by direct mitochondrial uncoupling.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Canabidiol/farmacologia , Curcumina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Quercetina/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Canabidiol/uso terapêutico , Curcumina/metabolismo , Curcumina/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Jurkat , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
7.
Arch Environ Contam Toxicol ; 76(4): 640-649, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806724

RESUMO

Artisanal and small-scale gold mining is the main source of human exposure to mercury (Hg) in many countries. This study was designed to evaluate total Hg (T-Hg) concentrations in human hair, fish, soil, and air from two major gold-mining districts (GMDs) at the department of Bolivar, Colombia. Total Hg was analyzed using a direct Hg analyzer. The mean T-Hg concentration in hair samples was 3.07 ± 0.14 µg/g (range 0.15-25.1 µg/g; median 2.02 µg/g). The highest Hg level was observed in Mojana GMD, specifically at Achi-La Raya (9.2 ± 0.6 µg/g) and the lowest in Morales, at the Middle Magdalena GMD (1.50 ± 0.16 µg/g). Hair T-Hg values exceeded the U.S. Environmental Protection Agency reference level of 1.0 µg/g. Correlation between T-Hg in hair and stature was negative for the Mojana, but the opposite for Middle Magdalena, although for both GMDs hair T-Hg correlated positively with fish intake. The highest average T-Hg fish concentrations were observed in Caquetaia kraussii (0.37 ± 0.10 µg/g), Sorubim cuspicaudus (0.32 ± 0.16 µg/g), Plagioscion surinamensis (0.22 ± 0.02 µg/g), Trachelyopterus insignis (0.20 ± 0.02 µg/g), and Pseudoplatystoma magdaleniatum (0.20 ± 0.02 µg/g). Human health risk assessment of Hg based on fish consumption suggested that, with the exception of P. magdalenae, all economically important fish species are potentially harmful for the communities. Soil Hg levels in amalgam burning facilities were extremely high, and Hg in the air around mines and gold-processing shops exceeded international guidelines. In short, Hg pollution in GMDs of Bolivar is extensive, and this situation requires special attention to reduce environmental and human health problems.


Assuntos
Exposição Ambiental/análise , Poluentes Ambientais/análise , Ouro , Mercúrio/análise , Mineração , Animais , Colômbia , Peixes/metabolismo , Cabelo/química , Humanos , Medição de Risco , Alimentos Marinhos/análise
8.
Curr Genet ; 64(1): 17-23, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28577219

RESUMO

In this mini-review, we present a perspective on the recent findings relating Spo0M structure and function that will stimulate and guide further studies in the characterization of this interesting protein. Cell division and sporulation constitute two of the best studied processes in the model organism Bacillus subtilis; however, there are many missing pieces in the giant regulatory puzzle that governs the independent and shared networks between them. Spo0M is a little studied protein that has been related to both, cell division and sporulation, but its biochemical function and its direct interactions have not been yet defined. Structural analysis of Spo0M revealed the presence of an arrestin-like domain and an FP domain (a dimerization domain present in proteasome elements), motifs more commonly found in eukaryotic proteins. The aim of this perspective is to present open questions regarding the functional and structural features of Spo0M that make this protein a good candidate for the ancestor of arrestins in bacteria and an important element in developmental and differentiation processes of Bacillus subtilis.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Esporos Bacterianos , Arrestinas/química , Arrestinas/genética , Arrestinas/metabolismo , Divisão Celular , Domínios e Motivos de Interação entre Proteínas , Estresse Fisiológico , Relação Estrutura-Atividade
9.
Plant Dis ; 102(11): 2170-2179, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30207900

RESUMO

Volatile organic compounds (VOC) produced by green residues for the management of plant-parasitic nematodes are poorly studied for oilseed plants and some Brassica spp. To investigate the activity of VOC in vitro and as biofumigants, dry and aqueous macerates of broccoli (Brassica oleracea var. italica) shoots and sunflower (Helianthus annuus) seed were used against the root-knot nematode Meloidogyne incognita. VOC produced by sunflower seed caused higher mortality of M. incognita second-stage juveniles (J2) than VOC produced by broccoli shoots but both plant species were equally effective in decreasing the infectivity and reproduction of this nematode. The number of galls and eggs produced by the nematode in tomato roots was reduced by 89 and 95%, respectively, on average, at the highest concentrations of broccoli and sunflower seed macerates tested as biofumigants. When nematodes were placed in water exposed to broccoli VOC, J2 immobility increased and the number of galls and eggs produced by the nematode in tomato roots decreased 80 and 96%, respectively. Water exposed to sunflower seed VOC had no effect on the viability of the nematode. Gas chromatography was used to identify five and six chemical groups in broccoli and in sunflower seed macerates, respectively, but only alcohols, sulfurated VOC, and terpenes were detected in the water exposed to these plant macerates. Sulfurated VOC from the water exposed to broccoli macerates were found to be involved in its activity against M. incognita. The purified VOC dimethyl disulfide (DMDS) and 3-pentanol were tested directly against J2 and showed a lethal concentration of 176 and 918 µg/ml (ppm), respectively, whereas dimethyl sulfide had no effect against M. incognita. Furthermore, DMDS and 3-pentanol retained in water killed J2 and reduced gall formation and the number of eggs of M. incognita on tomato roots. Both these plant species produced toxic VOC to M. incognita, whereas only VOC retained in water exposed to broccoli had activity against M. incognita.


Assuntos
Antinematódeos/farmacologia , Brassica/química , Helianthus/química , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Tylenchoidea/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Animais , Antinematódeos/química , Antinematódeos/isolamento & purificação , Feminino , Fumigação , Óvulo/efeitos dos fármacos , Brotos de Planta/química , Sementes/química , Tylenchoidea/fisiologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
10.
IUBMB Life ; 69(2): 55-62, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28111926

RESUMO

Membrane remodeling processes in eukaryotes, such as those involved in endocytosis and intracellular trafficking, are mediated by a large number of structural, accessory and regulatory proteins. These processes occur in all cell types, enabling the exchange of signals and/or nutrients with the external medium and with neighboring cells; likewise, they are required for the intracellular trafficking of various cargo molecules between organelles, as well as the recycling of these structures. Recent studies have demonstrated that some elements of the molecular machinery involved in regulating and mediating endocytosis in eukaryotic cells are also present in some bacteria, where they participate in processes such as cell division, sporulation and signal transduction. However, the mechanism whereby this prokaryotic machinery carries out such functions has barely begun to be elucidated. This review summarizes recent information about the cytoskeletal and membrane-organizing proteins for which bacterial homologs have been identified; given their known functions, they may be considered to be part of an ancestral membrane organization system that first emerged in prokaryotes and which further evolved into the more complex regulatory networks operating in eukaryotes. © 2017 IUBMB Life, 69(2):55-62, 2017.


Assuntos
Membrana Celular/genética , Citoesqueleto/genética , Endocitose/genética , Proteínas de Membrana/genética , Membrana Celular/química , Citoesqueleto/química , Eucariotos/química , Eucariotos/genética , Proteínas de Membrana/química , Células Procarióticas/química , Células Procarióticas/metabolismo , Transdução de Sinais , Esporos Bacterianos/química , Esporos Bacterianos/genética
11.
Plant Foods Hum Nutr ; 72(3): 314-320, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28852927

RESUMO

Phenolic acids profiles, chemical antioxidant activities (ABTS and ORAC), as well as cellular antioxidant activity (CAA) of tortilla of Mexican native maize landraces elaborated from nixtamalization and lime cooking extrusion processes were studied. Both cooking procedures decreased total phenolics, chemicals antioxidant activity when compared to raw grains. Extruded tortillas retained 79.6-83.5%, 74.1-77.6% and 79.8-80.5% of total phenolics, ABTS and ORAC values, respectively, compared to 47.8-49.8%, 41.3-42.3% and 43.7-44.4% assayed in traditional tortillas, respectively. Approximately 72.5-88.2% of ferulic acid in raw grains and their tortillas were in the bound form. Regarding of the CAA initially found in raw grains, the retained percentage for traditional and extruded tortillas ranged from 47.4 to 48.7% and 72.8 to 77.5%, respectively. These results suggest that Mexican maize landrace used in this study could be considered for the elaboration of nixtamalized and extruded food products with nutraceutical potential.


Assuntos
Antocianinas/análise , Hidroxibenzoatos/análise , Fenóis/análise , Zea mays/química , Pão/análise , Compostos de Cálcio , Culinária , Ácidos Cumáricos/análise , Suplementos Nutricionais , México , Óxidos
12.
Int J Mol Sci ; 17(1)2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797601

RESUMO

The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing of the fruits. Therefore, the effective extraction of proanthocyanidins from fruits to their juices or derived products will depend on the ability to manage these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the role of pure hydrolytic enzymes (polygalacturonase and cellulose) and a commercial enzyme containing these two activities on the extent of proanthocyanidin-cell wall interactions. The results showed that the modification promoted by enzymes reduced the amount of proanthocyanidins adsorbed to cell walls since they contributed to the degradation and release of the cell wall polysaccharides, which diffused into the model solution. Some of these released polysaccharides also presented some reactivity towards the proanthocyanidins present in a model solution.


Assuntos
Parede Celular/química , Celulase/química , Frutas/química , Poligalacturonase/química , Polissacarídeos/química , Proantocianidinas/química , Cromatografia em Gel , Tecnologia de Alimentos/métodos , Hidrólise , Malus/química , Extratos Vegetais/química , Polissacarídeos/isolamento & purificação , Proantocianidinas/isolamento & purificação , Vitis/química
13.
BMC Genomics ; 16: 1059, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26666532

RESUMO

BACKGROUND: The initiation of translation via cellular internal ribosome entry sites plays an important role in the stress response and certain physiological conditions in which canonical cap-dependent translation initiation is compromised. Currently, only a limited number of these regulatory elements have been experimentally identified. Notably, cellular internal ribosome entry sites lack conservation of both the primary sequence and mRNA secondary structure, rendering their identification difficult. Despite their biological importance, the currently available computational strategies to predict them have had limited success. We developed a bioinformatic method based on a support vector machine for the prediction of internal ribosome entry sites in fungi using the 5'-UTR sequences of 20 non-redundant fungal organisms. Additionally, we performed a comparative analysis and characterization of the functional relationships among the gene products predicted to be translated by this cap-independent mechanism. RESULTS: Using our method, we predicted 6,532 internal ribosome entry sites in 20 non-redundant fungal organisms. Some orthologous groups were enriched with our positive predictions. This is the case of the HSP70 chaperone family, which remarkably has two verified internal ribosome entry sites, one in humans and the other in flies. A second example is the orthologous group of the eIF4G repression protein Sbp1p, which has two homologous genes known to be translated by this cap-independent mechanism, one in mice and the other in yeast. These examples emphasize the wide conservation of these regulatory elements as a result of selective pressure. In addition, we performed a protein-protein interaction network characterization of the gene products of our positive predictions using Saccharomyces cerevisiae as a model, which revealed a highly connected and modular topology, suggesting a functional association. A remarkable example of this functional association is our prediction of internal ribosome entry sites elements in three components of the RNA polymerase II mediator complex. CONCLUSIONS: We developed a method for the prediction of cellular internal ribosome entry sites that may guide experimental and bioinformatic analyses to increase our understanding of protein translation regulation. Our analysis suggests that fungi show evolutionary conservation and functional association of proteins translated by this cap-independent mechanism.


Assuntos
Biologia Computacional/métodos , Proteínas Fúngicas/genética , Fungos/genética , Sítios Internos de Entrada Ribossomal , Regiões 5' não Traduzidas , Fungos/classificação , Filogenia , Mapas de Interação de Proteínas , RNA Fúngico/análise , Máquina de Vetores de Suporte
14.
Plant Foods Hum Nutr ; 70(3): 351-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26243665

RESUMO

Jatropha curcas is an oil seed plant that belongs to the Euphorbiaceae family. Nontoxic genotypes have been reported in Mexico. The purpose of the present work was to evaluate the effect of a Mexican variety of J. curcas protein concentrate (JCP) on weight gain, biochemical parameters, and the expression of genes and proteins involved in insulin signaling, lipogenesis, cholesterol and protein synthesis in rats. The results demonstrated that short-term consumption of JCP increased serum glucose, insulin, triglycerides and cholesterol levels as well as the expression of transcription factors involved in lipogenesis and cholesterol synthesis (SREBP-1 and LXRα). Moreover, there was an increase in insulin signaling mediated by Akt phosphorylation and mTOR. JCP also increased PKCα protein abundance and the activation of downstream signaling pathway targets such as the AP1 and NF-κB transcription factors typically activated by phorbol esters. These results suggested that phorbol esters are present in JCP, and that they could be involved in the activation of PKC which may be responsible for the high insulin secretion and consequently the activation of insulin-dependent pathways. Our data suggest that this Mexican Jatropha variety contains toxic compounds that produce negative metabolic effects which require caution when using in the applications of Jatropha-based products in medicine and nutrition.


Assuntos
Insulina/metabolismo , Jatropha/química , Lipogênese/efeitos dos fármacos , Ésteres de Forbol/efeitos adversos , Proteínas de Plantas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Animais , Glicemia/metabolismo , Proteínas Alimentares/farmacologia , Jatropha/classificação , Fígado/efeitos dos fármacos , Fígado/metabolismo , México , Ésteres de Forbol/farmacologia , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Sementes/química , Transdução de Sinais , Especificidade da Espécie , Fatores de Transcrição/metabolismo
15.
PLoS One ; 19(6): e0303210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843174

RESUMO

Cellular metabolic activity can be detected by tetrazolium-based colorimetric assays, which rely on dehydrogenase enzymes from living cells to reduce tetrazolium compounds into colored formazan products. Although these methods have been used in different fields of microbiology, their application to the detection of bacteria with plastic-degrading activity has not been well documented. Here, we report a microplate-adapted method for the detection of bacteria metabolically active on the commercial polyester polyurethane (PU) Impranil®DLN using the tetrazolium salt 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT). Bacterial cells that are active on PU reduce XTT to a water-soluble orange dye, which can be quantitatively measured using a microplate reader. We used the Pseudomonas putida KT2440 strain as a study model. Its metabolic activity on Impranil detected by our novel method was further verified by Fourier-transform infrared spectroscopy (FTIR) analyses. Measurements of the absorbance of reduced XTT at 470 nm in microplate wells were not affected by the colloidal properties of Impranil or cell density. In summary, we provide here an easy and high-throughput method for screening bacteria active on PU that can be adapted to other plastic substrates.


Assuntos
Poliuretanos , Pseudomonas putida , Sais de Tetrazólio , Poliuretanos/química , Pseudomonas putida/metabolismo , Sais de Tetrazólio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Colorimetria/métodos
16.
Microbiol Resour Announc ; 13(7): e0033524, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38916305

RESUMO

We report the draft genome sequence of three marine bacteria belonging to Pseudomonas and Stutzerimonas genera, with hydrocarbonoclastic metabolism for oil and monoaromatic hydrocarbon degradation. The genomic information of these organisms contributes to the knowledge of natural and polluted marine environments with ubiquitous presence of hydrocarbons as a selective pressure.

17.
Environ Sci Pollut Res Int ; 31(31): 43561-43582, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918295

RESUMO

The 2030 Agenda, established in 2015, contains seventeen Sustainable Development Goals (SDGs) aimed at addressing global challenges. SDG-06, focused on clean water, drives the increase in basic sanitation coverage, the management of wastewater discharges, and water quality. Wastewater treatment could contribute to achieving 11 of the 17 SDGs. For this purpose, phytoremediation is a low-cost and adaptable alternative to the reduction and control of aquatic pollutants. The objective of this study is to highlight the role of macrophytes in the removal and degradation of these compounds, focusing on Eichhornia crassipes (Mart.) Solms, commonly known as water hyacinth. The reported values indicate that this plant has a removal capacity of over 70% for metals such as copper, aluminum, lead, mercury, cadmium, and metalloids such as arsenic. Additionally, it significantly improves water quality parameters such as turbidity, suspended solids, pH, dissolved oxygen, and color. It also reduces the presence of phosphates, and nitrogen compounds to values below 50%. It also plays a significant role in the removal of organic contaminants such as pesticides, pharmaceuticals, and dyes. This study describes several valuable by-products from the biomass of the water hyacinth, including animal and fish feed, energy generation (such as briquettes), ethanol, biogas, and composting. According to the analysis carried out, E. crassipes has a great capacity for phytoremediation, which makes it a viable solution for wastewater management, with great potential for water ecosystem restoration.


Assuntos
Biodegradação Ambiental , Eichhornia , Águas Residuárias , Poluentes Químicos da Água , Eichhornia/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Desenvolvimento Sustentável , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Qualidade da Água
18.
Mar Biotechnol (NY) ; 26(3): 447-459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691271

RESUMO

Marine environments harbor a plethora of microorganisms that represent a valuable source of new biomolecules of biotechnological interest. In particular, enzymes from marine bacteria exhibit unique properties due to their high catalytic activity under various stressful and fluctuating conditions, such as temperature, pH, and salinity, fluctuations which are common during several industrial processes. In this study, we report a new esterase (EstGoM) from a marine Pseudomonas sp. isolated at a depth of 1000 m in the Gulf of Mexico. Bioinformatic analyses revealed that EstGoM is an autotransporter esterase (type Va) and belongs to the lipolytic family II, forming a new subgroup. The purified recombinant EstGoM, with a molecular mass of 67.4 kDa, showed the highest hydrolytic activity with p-nitrophenyl octanoate (p-NP C8), although it was also active against p-NP C4, C5, C10, and C12. The optimum pH and temperature for EstGoM were 9 and 60 °C, respectively, but it retained more than 50% of its activity over the pH range of 7-11 and temperature range of 10-75 °C. In addition, EstGoM was tolerant of up to 1 M NaCl and resistant to the presence of several metal ions, detergents, and chemical reagents, such as EDTA and ß-mercaptoethanol. The enzymatic properties of EstGoM make it a potential candidate for several industrial applications.


Assuntos
Esterases , Pseudomonas , Pseudomonas/enzimologia , Pseudomonas/genética , Especificidade por Substrato , Esterases/metabolismo , Esterases/genética , Esterases/química , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Temperatura , Estabilidade Enzimática , Filogenia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Água do Mar/microbiologia
19.
Int J Microbiol ; 2024: 6959403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784405

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments, including soil, water, and habitats associated with animals, humans, and plants. From a One Health perspective, which recognizes the interconnectedness of human, animal, and environmental health, it is important to study the virulence characteristics and antibiotic susceptibility of environmental bacteria. In this study, we compared the virulence properties and the antibiotic resistance profiles of seven isolates collected from the Gulf of Mexico with those of seven clinical strains of P. aeruginosa. Our results indicate that the marine and clinical isolates tested exhibit similar virulence properties; they expressed different virulence factors and were able to kill Galleria mellonella larvae, an animal model commonly used to analyze the pathogenicity of many bacteria, including P. aeruginosa. In contrast, the clinical strains showed higher antibiotic resistance than the marine isolates. Consistently, the clinical strains exhibited a higher prevalence of class 1 integron, an indicator of anthropogenic impact, compared with the marine isolates. Thus, our results indicate that the P. aeruginosa marine strains analyzed in this study, isolated from the Gulf of Mexico, have similar virulence properties, but lower antibiotic resistance, than those from hospitals.

20.
Rev Biol Trop ; 61(2): 821-8, 2013 Jun.
Artigo em Espanhol | MEDLINE | ID: mdl-23885592

RESUMO

Pollution by heavy metals in marine ecosystems in the Gulf of Mexico is one of the hardest conservation issues to solve. Sharks as top predators are bioindicators of the marine ecosystem health, since they tend to bioaccumulate and biomagnify contaminants; they also represent a food source for local consumption. Thus, the objective of this study was to study the possible presence of heavy metals and a metalloid in livers of Carcharhinus limbatus. For this, a total of 19 shark livers were taken from animals captured nearby Tamihua, Veracruz, Mexico from December 2007 to April 2008. 12 out of the 19 captured sharks were males, one was an adult female, three were juvenile males, and three juvenile females. Four heavy metals (Hg, Pb, Cd, and Cr) and one metaloid (As) were analyzed in shark livers using an atomic absorption spectrophotometry with flame and hydride generator. Our results showed that the maximum concentrations found were: Hg = 0.69 mg/kg, Cd = 0.43 mg/kg, As = 27.37 mg/kg, Cr = 0.70 mg/kg. The minimum concentrations found were: As = 14.91 mg/kg, Cr = 0.35 mg/kg. The Pb could not be determined because the samples did not have the spectrophotometer minimum detectable amount (0.1 mg/kg). None of the 19 samples analyzed showed above the permissible limits established by Mexican and American laws. There was a correlation between shark size and Cr and As concentration (Pearson test). The concentration of Cr and As was observed to be higher in bigger animals. There was not a significant difference in heavy metals concentration between juveniles and adults; however, there was a difference between males and females. A higher Cr concentration was found in females when compared to males. None of the samples exceed the maximum limit established by the laws of Mexico and the United States of America. Much longer studies are needed with C. limbatus and other species caught in the region, in order to determine the degree of contaminants exposure in aquatic ecosystems and to identify potential health risks to consumers.


Assuntos
Fígado/química , Metais Pesados/análise , Tubarões , Animais , Arsênio/análise , Cádmio/análise , Cromo/análise , Feminino , Chumbo/análise , Masculino , Mercúrio/análise , México , Espectrofotometria Atômica , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA