Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nanotechnology ; 27(28): 285101, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27255548

RESUMO

Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800-850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer.


Assuntos
Nanoestruturas , Animais , Biomarcadores Tumorais , Calreticulina , Clero , Fluorescência , Ouro , Humanos
2.
Sci Rep ; 14(1): 2586, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297132

RESUMO

Disease modeling using human induced pluripotent stem cells (hiPSCs) from patients with genetic disease is a powerful approach for dissecting pathophysiology and drug discovery. Nevertheless, isogenic controls are required to precisely compare phenotypic outcomes from presumed causative mutations rather than differences in genetic backgrounds. Moreover, 2D cellular models often fail to exhibit authentic disease phenotypes resulting in poor validation in vitro. Here we show that a combination of precision gene editing and bioengineered 3D tissue models can establish advanced isogenic hiPSC-derived cardiac disease models, overcoming these drawbacks. To model inherited cardiac arrhythmias we selected representative N588D and N588K missense mutations affecting the same codon in the hERG potassium channel gene KCNH2, which are reported to cause long (LQTS) and short (SQTS) QT syndromes, respectively. We generated compound heterozygous variants in normal hiPSCs, and differentiated cardiomyocytes (CMs) and mesenchymal cells (MCs) to form 3D cardiac tissue sheets (CTSs). In hiPSC-derived CM monolayers and 3D CTSs, electrophysiological analysis with multielectrode arrays showed prolonged and shortened repolarization, respectively, compared to the isogenic controls. When pharmacologically inhibiting the hERG channels, mutant 3D CTSs were differentially susceptible to arrhythmic events than the isogenic controls. Thus, this strategy offers advanced disease models that can reproduce clinically relevant phenotypes and provide solid validation of gene mutations in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/genética , Canal de Potássio ERG1/genética , Arritmias Cardíacas/genética , Mutação , Miócitos Cardíacos/fisiologia , Fenótipo , Potenciais de Ação/genética
3.
PLoS One ; 15(11): e0241287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33137106

RESUMO

Currently, cardiomyocyte (CM) differentiation methods require a purification step after CM induction to ensure the high purity of the cell population. Here we show an improved human CM differentiation protocol with which high-purity ventricular-type CMs can be obtained and maintained without any CM purification process. We induced and collected a mesodermal cell population (platelet-derived growth factor receptor-α (PDGFRα)-positive cells) that can respond to CM differentiation cues, and then stimulated CM differentiation by means of Wnt inhibition. This method reproducibly generated CMs with purities above 95% in several human pluripotent stem cell lines. Furthermore, these CM populations were maintained in culture at such high purity without any further CM purification step for over 200 days. The majority of these CMs (>95%) exhibited a ventricular-like phenotype with a tendency to structural and electrophysiological maturation, including T-tubule-like structure formation and the ability to respond to QT prolongation drugs. This is a simple and valuable method to stably generate CM populations suitable for cardiac toxicology testing, disease modeling and regenerative medicine.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Mesoderma/crescimento & desenvolvimento , Miócitos Cardíacos/citologia , Técnicas de Cultura de Células/métodos , Linhagem da Célula/genética , Fenômenos Eletrofisiológicos , Ventrículos do Coração/citologia , Humanos , Mesoderma/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Wnt/antagonistas & inibidores
4.
Sci Rep ; 7: 44045, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276469

RESUMO

The hallmark of tumours is the ability of cancerous cells to promote vascular growth, to disseminate and invade to distant organs. The metastatic process is heavily influenced by the extracellular matrix (ECM) density and composition of the surrounding tumour microenvironment. These microenvironmental cues, which include hypoxia, also regulate the angiogenic processes within a tumour, facilitating the spread of cancer cells. We engineered compartmentalized biomimetic colorectal tumouroids with stromal surrounds that comprised a range of ECM densities, composition and stromal cell populations. Recapitulating tissue ECM composition and stromal cell composition enhanced cancer cell invasion. Manipulation of ECM density was associated with an altered migration pattern from glandular buds (cellular aggregates) to epithelial cell sheets. Laminin appeared to be a critical component in regulating endothelial cell morphology and vascular network formation. Interestingly, the disruption of vascular networks by cancer cells was driven by changes in expression of several anti-angiogenic genes. Cancer cells cultured in our biomimetic tumouroids exhibited intratumoural heterogeneity that was associated with increased tumour invasion into the stroma. These findings demonstrate that our 3D in vitro tumour model exhibits biomimetic attributes that may permit their use in studying microenvironment clues of tumour progression and angiogenesis.


Assuntos
Movimento Celular , Modelos Biológicos , Neoplasias , Neovascularização Patológica , Engenharia Tecidual , Microambiente Tumoral , Linhagem Celular Tumoral , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
5.
Nanomedicine (Lond) ; 11(4): 331-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26786002

RESUMO

AIM: In this work, we use cationic organic nanocarriers as chemotherapy delivery platforms and test them in a colorectal cancer 3D in vitro model. MATERIALS & METHODS: We used 3beta-(N-[N',N'-dimethylaminoethane]carbamoyl])cholesterol (DC-chol) and dioleoylphosphatidylethanolamine (DOPE) liposomes and N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ) micelles, to deliver AZD6244, a MEK inhibitor, to HCT116 cells cultured as monolayers and in 3D in vitro cancer models (tumoroids). RESULTS: Nanoparticle-mediated drug delivery was superior to the free drug in monolayer experiments and despite their therapeutic effect being hindered by poor diffusion through the cancer mass, GCPQ micelles were also superior in tumoroids. CONCLUSION: These results support the role of nanoparticles in improving drug delivery and highlight the need to include 3D cancer models in early phases of drug development.


Assuntos
Antineoplásicos/administração & dosagem , Benzimidazóis/administração & dosagem , Colesterol/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos , Lipossomos , Micelas , Neoplasias Colorretais/patologia , Humanos , Técnicas In Vitro
6.
J Tissue Eng ; 5: 2041731414544183, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383169

RESUMO

The preclinical development process of chemotherapeutic drugs is often carried out in two-dimensional monolayer cultures. However, a considerable amount of evidence demonstrates that two-dimensional cell culture does not accurately reflect the three-dimensional in vivo tumour microenvironment, specifically with regard to gene expression profiles, oxygen and nutrient gradients and pharmacokinetics. With this objective in mind, we have developed and established a physiologically relevant three-dimensional in vitro model of colorectal cancer based on the removal of interstitial fluid from collagen type I hydrogels. We employed the RAFT™ (Real Architecture For 3D Tissue) system for producing three-dimensional cultures to create a controlled reproducible, multiwell testing platform. Using the HT29 and HCT116 cell lines to model epidermal growth factor receptor expressing colorectal cancers, we characterized three-dimensional cell growth and morphology in addition to the anti-proliferative effects of the anti-epidermal growth factor receptor chemotherapeutic agent cetuximab in comparison to two-dimensional monolayer cultures. Cells proliferated well for 14 days in three-dimensional culture and formed well-defined cellular aggregates within the concentrated collagen matrix. Epidermal growth factor receptor expression levels revealed a twofold and threefold increase in three-dimensional cultures for both HT29 and HCT116 cells in comparison to two-dimensional monolayers, respectively (p < 0.05; p < 0.01). Cetuximab efficacy was significantly lower in HT29 three-dimensional cultures in comparison to two-dimensional monolayers, whereas HCT116 cells in both two-dimension and three-dimension were non-responsive to treatment in agreement with their KRAS mutant status. In summary, these results confirm the use of a three-dimensional in vitro cancer model as a suitable drug-screening platform for in vitro pharmacological testing.

7.
Curr Opin Pharmacol ; 12(4): 414-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22465543

RESUMO

A major focus in translational cancer research is the study of nanocarriers as novel delivery systems for chemotherapeutics. Organic vesicular nanocarriers, such as liposomes and micelles, have the advantage of low toxicity and the versatility to carry diverse drugs and conjugate to targeting agents. This offers the potential for combining treatment and diagnosis (theranostics). Successful incorporation into these nanoformulations has been demonstrated for classical chemotherapeutic drugs that are mostly hydrophobic, small interfering RNA, biological therapeutics and specific nanoparticles, such as superparamagnetic nanoparticles. Liposomes and micelles appear to take advantage of the enhanced permeability and retention (EPR) effect in solid tumours to increase accumulation at the target site (passive targeting). This translates to the clinic, where liposomal drug formulations are reported to exhibit higher efficacy and less side effects. Multidrug formulations and combinations with other treatments, for example, radiation or radiofrequency ablation, to trigger drug release from the nanocarrier at the target site, are mostly at the pre-clinical stage. More complex formulations that incorporate treatment agents together with targeting (active targeting) and imaging molecules have also been investigated in in vivo models with encouraging results.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Humanos , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA