Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(2): H331-H339, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847760

RESUMO

Chronic exercise training is associated with an "athlete's artery" phenotype in young adults and an attenuated age-related decline in endothelium-dependent arterial function. Adolescence is associated with an influx of sex-specific hormones that may exert divergent effects on endothelial function, but whether training adaptations interact with biological maturation to produce a "youth athlete's artery" has not been explored. We investigated the influence of exercise-training status on endothelium-dependent arterial function during childhood and adolescence. Brachial artery flow-mediated dilation (FMD) was assessed in n = 102 exercise-trained (males, n = 25; females, n = 29) and untrained (males, n = 23; females, n = 25) youths, characterized as pre (males, n = 25; females, n = 26)- or post (males, n = 23; females, n = 28)-predicted age at peak height velocity (PHV). Baseline brachial artery diameter was larger in post- compared with pre-PHV youths (P ≤ 0.001), males compared with females (P ≤ 0.001), and trained compared with untrained youths (3.26 ± 0.51 vs. 3.11 ± 0.42 mm; P = 0.041). Brachial FMD was similar in pre- and post-PHV youths (P = 0.298), and males and females (P = 0.946). However, exercise-trained youths demonstrated higher FMD when compared with untrained counterparts (5.3 ± 3.3 vs. 3.0 ± 2.6%; P ≤ 0.001). Furthermore, brachial artery diameter (r2 = 0.142; P = 0.007 vs. r2 = 0.004; P = 0.652) and FMD (r2 = 0.138; P = 0.008 vs. r2 = 0.003; P = 0.706) were positively associated with cardiorespiratory fitness in post-, but not pre-PHV youths, respectively. Collectively, our data indicate that exercise training is associated with brachial artery remodeling and enhanced endothelial function during youth. However, arterial remodeling and endothelium-dependent function are only associated with elevated cardiorespiratory fitness during later stages of adolescence.NEW & NOTEWORTHY We report preliminary evidence of the "youth athlete's artery," characterized by training-related arterial remodeling and elevated endothelium-dependent arterial function in children and adolescents. However, training-related adaptations in brachial artery diameter and flow-mediated dilation (FMD) were associated with cardiorespiratory fitness in adolescents, but not in children. Our findings indicate that endothelium-dependent arterial function is modifiable with chronic exercise training during childhood, but the association between FMD and elevated cardiorespiratory fitness is only apparent during later stages of adolescence.


Assuntos
Artéria Braquial , Exercício Físico , Vasodilatação , Humanos , Masculino , Feminino , Adolescente , Artéria Braquial/fisiologia , Artéria Braquial/diagnóstico por imagem , Criança , Exercício Físico/fisiologia , Endotélio Vascular/fisiologia , Fluxo Sanguíneo Regional , Adaptação Fisiológica , Atletas , Fatores Etários
2.
Scand J Med Sci Sports ; 34(3): e14594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454596

RESUMO

AIMS: Cardiac adaptations in elite, male adolescent youth soccer players have been demonstrated in relation to training status. The time course of these adaptations and the delineation of the influence of volatile growth phases from the training effect on these adaptations remain unclear. Consequently, the aims of the study were to evaluate the impact of 3 years of elite-level soccer training on changes in left ventricular (LV) structure and function in a group of highly trained elite youth male soccer players (SP) as they transitioned through the pre-to-adolescent phase of their growth. METHODS: Twenty-two male youth SP from the highest Level of English Premier League Academy U-12 teams were evaluated once a year for three soccer seasons as the players progressed from the U-12 to U-14 teams. Fifteen recreationally active control participants (CON) were also evaluated over the same 3-year period. Two-dimensional transthoracic echocardiography was used to quantify LV structure and function. RESULTS: After adjusting for the influence of growth and maturation, training-induced increases in Years 2 and 3 were noted for: LV end diastolic volume (LVEDV; p = 0.02) and LV end systolic volume (LVESV; p = 0.02) in the SP compared to CON. Training-induced decrements were noted for LV ejection fraction (LVEF; p = 0.006) and TDI-S' (p < 0.001). CONCLUSIONS: An increase in training volume (Years 2 and 3) were aligned with LV volumetric adaptations and decrements in systolic function in the SP that were independent from the influence of rapid somatic growth. Decrements in systolic function were suggestive of a functional reserve for exercise.


Assuntos
Futebol , Humanos , Masculino , Adolescente , Ventrículos do Coração/diagnóstico por imagem , Função Ventricular Esquerda , Volume Sistólico , Exercício Físico
3.
Am J Physiol Heart Circ Physiol ; 325(3): H510-H521, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450291

RESUMO

Neurovascular coupling (NVC) is mediated via nitric oxide signaling, which is independently influenced by sex hormones and exercise training. Whether exercise training differentially modifies NVC pre- versus postpuberty, where levels of circulating sex hormones will differ greatly within and between sexes, remains to be determined. Therefore, we investigated the influence of exercise training status on resting intracranial hemodynamics and NVC at different stages of maturation. Posterior and middle cerebral artery velocities (PCAv and MCAv) and pulsatility index (PCAPI and MCAPI) were assessed via transcranial Doppler ultrasound at rest and during visual NVC stimuli. N = 121 exercise-trained (males, n = 32; females, n = 32) and untrained (males, n = 28; females, n = 29) participants were characterized as pre (males, n = 33; females, n = 29)- or post (males, n = 27; females, n = 32)-peak height velocity (PHV). Exercise-trained youth demonstrated higher resting MCAv (P = 0.010). Maturity and training status did not affect the ΔPCAv and ΔMCAv during NVC. However, pre-PHV untrained males (19.4 ± 13.5 vs. 6.8 ± 6.0%; P ≤ 0.001) and females (19.3 ± 10.8 vs. 6.4 ± 7.1%; P ≤ 0.001) had a higher ΔPCAPI during NVC than post-PHV untrained counterparts, whereas the ΔPCAPI was similar in pre- and post-PHV trained youth. Pre-PHV untrained males (19.4 ± 13.5 vs. 7.9 ± 6.0%; P ≤ 0.001) and females (19.3 ± 10.8 vs. 11.1 ± 7.3%; P = 0.016) also had a larger ΔPCAPI than their pre-PHV trained counterparts during NVC, but the ΔPCAPI was similar in trained and untrained post-PHV youth. Collectively, our data indicate that exercise training elevates regional cerebral blood velocities during youth, but training-mediated adaptations in NVC are only attainable during early stages of adolescence. Therefore, childhood provides a unique opportunity for exercise-mediated adaptations in NVC.NEW & NOTEWORTHY We report that the change in cerebral blood velocity during a neurovascular coupling task (NVC) is similar in pre- and postpubertal youth, regardless of exercise-training status. However, prepubertal untrained youth demonstrated a greater increase in cerebral blood pulsatility during the NVC task when compared with their trained counterparts. Our findings highlight that childhood represents a unique opportunity for exercise-mediated adaptations in cerebrovascular hemodynamics during NVC, which may confer long-term benefits in cerebrovascular function.


Assuntos
Acoplamento Neurovascular , Masculino , Feminino , Humanos , Adolescente , Criança , Hemodinâmica , Exercício Físico , Artéria Cerebral Média/diagnóstico por imagem , Ultrassonografia Doppler Transcraniana , Circulação Cerebrovascular
4.
Exp Physiol ; 108(10): 1245-1249, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37031381

RESUMO

NEW FINDINGS: What is the topic of this review? We review barosensory vessel mechanics and their role in blood pressure regulation across the lifespan. What advances does it highlight? In young normotensive men, aortic unloading mechanics contribute to the resting operating point of the vascular sympathetic baroreflex; however, with advancing age, this contribution is removed. This suggests that barosensory vessel unloading mechanics are not driving the well-documented age-related increase in resting muscle sympathetic nerve activity. ABSTRACT: An age-associated increase in arterial blood pressure is evident for apparently healthy humans. This is frequently attributed to stiffening of the central arteries and a concurrent increase in sympathetic outflow, potentially mediated by a reduced ability of the baroreceptive vessels to distend. This is supported, in part, by a reduced mechanical component of the vascular sympathetic baroreflex (i.e., a reduction in distension for a given pressure). Previous characterization of the mechanical component has assessed only carotid artery distension; however, evidence suggests that both the aortic and carotid baroreflexes are integral to blood pressure regulation. In addition, given that baroreceptors are located in the vessel wall, the change in wall tension, comprising diameter, pressure and vessel wall thickness, and the mechanics of this change might provide a better index of the baroreceptor stimulus than the previous method used to characterize the mechanical component that relies on diameter alone. This brief review summarizes the data using this new method of assessing barosensory vessel mechanics and their influence on the vascular sympathetic baroreflex across the lifespan.


Assuntos
Barorreflexo , Pressorreceptores , Masculino , Humanos , Barorreflexo/fisiologia , Pressão Sanguínea , Pressorreceptores/fisiologia , Artérias Carótidas/fisiologia , Sistema Nervoso Simpático/fisiologia , Homeostase , Frequência Cardíaca/fisiologia
5.
Exp Physiol ; 108(12): 1500-1515, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742137

RESUMO

NEW FINDINGS: What is the central question of this study? Gonadal hormones modulate cerebrovascular function while insulin-like growth factor 1 (IGF-1) facilitates exercise-mediated cerebral angiogenesis; puberty is a critical period of neurodevelopment alongside elevated gonadal hormone and IGF-1 activity: but whether exercise training across puberty enhances cerebrovascular function is unkown. What is the main finding and its importance? Cerebral blood flow is elevated in endurance trained adolescent males when compared to untrained counterparts. However, cerebrovascular reactivity to hypercapnia is faster in trained vs. untrained children, but not adolescents. Exercise-induced improvements in cerebrovascular function are attainable as early as the first decade of life. ABSTRACT: Global cerebral blood flow (gCBF) and cerebrovascular reactivity to hypercapnia ( CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) are modulated by gonadal hormone activity, while insulin-like growth factor 1 facilitates exercise-mediated cerebral angiogenesis in adults. Whether critical periods of heightened hormonal and neural development during puberty represent an opportunity to further enhance gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ is currently unknown. Therefore, we used duplex ultrasound to assess gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ in n = 128 adolescents characterised as endurance-exercise trained (males: n = 30, females: n = 36) or untrained (males: n = 29, females: n = 33). Participants were further categorised as pre- (males: n = 35, females: n = 33) or post- (males: n = 24, females: n = 36) peak height velocity (PHV) to determine pubertal or 'maturity' status. Three-factor ANOVA was used to identify main and interaction effects of maturity status, biological sex and training status on gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Data are reported as group means (SD). Pre-PHV youth demonstrated elevated gCBF and slower CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response times than post-PHV counterparts (both: P ≤ 0.001). gCBF was only elevated in post-PHV trained males when compared to untrained counterparts (634 (43) vs. 578 (46) ml min-1 ; P = 0.007). However, CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time was faster in pre- (72 (20) vs. 95 (29) s; P ≤ 0.001), but not post-PHV (P = 0.721) trained youth when compared to untrained counterparts. Cardiorespiratory fitness was associated with gCBF in post-PHV youth (r2  = 0.19; P ≤ 0.001) and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time in pre-PHV youth (r2  = 0.13; P = 0.014). Higher cardiorespiratory fitness during adolescence can elevate gCBF while exercise training during childhood primes the development of cerebrovascular function, highlighting the importance of exercise training during the early stages of life in shaping the cerebrovascular phenotype.


Assuntos
Hipercapnia , Fator de Crescimento Insulin-Like I , Masculino , Adulto , Criança , Feminino , Humanos , Adolescente , Exercício Físico/fisiologia , Circulação Cerebrovascular/fisiologia , Hormônios Gonadais
6.
J Physiol ; 600(3): 583-601, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935156

RESUMO

Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption ( V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ ), and such adaptations may be augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography), blood volume, haemoglobin (Hb) mass (CO rebreathing) and V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ in endurance-trained and untrained boys (n = 42, age = 9.0-17.1 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$  = 61.6 ± 7.2 ml/kg/min, and n = 31, age = 8.0-17.7 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$  = 46.5 ± 6.1 ml/kg/min, respectively) and girls (n = 45, age = 8.2-17.0 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$  = 51.4 ± 5.7 ml/kg/min, and n = 36, age = 8.0-17.6 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$  = 39.8 ± 5.7 ml/kg/min, respectively). Pubertal stage was estimated via maturity offset, with participants classified as pre- or post-peak height velocity (PHV). Pre-PHV, only a larger LV end-diastolic volume/lean body mass (EDV/LBM) for trained boys (+0.28 ml/kg LBM, P = 0.007) and a higher Hb mass/LBM for trained girls (+1.65 g/kg LBM, P = 0.007) were evident compared to untrained controls. Post-PHV, LV mass/LBM (boys: +0.50 g/kg LBM, P = 0.0003; girls: +0.35 g/kg LBM, P = 0.003), EDV/LBM (boys: +0.35 ml/kg LBM, P < 0.0001; girls: +0.31 ml/kg LBM, P = 0.0004), blood volume/LBM (boys: +12.47 ml/kg LBM, P = 0.004; girls: +13.48 ml/kg LBM, P = 0.0002.) and Hb mass/LBM (boys: +1.29 g/kg LBM, P = 0.015; girls: +1.47 g/kg LBM, P = 0.002) were all greater in trained versus untrained groups. Pre-PHV, EDV (R2adj  = 0.224, P = 0.001) in boys, and Hb mass and interventricular septal thickness (R2adj  = 0.317, P = 0.002) in girls partially accounted for the variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ . Post-PHV, stronger predictive models were evident via the inclusion of LV wall thickness and EDV in boys (R2adj  = 0.608, P < 0.0001), and posterior wall thickness and Hb mass in girls (R2adj  = 0.490, P < 0.0001). In conclusion, cardiovascular adaptation to exercise training is more pronounced post-PHV, with evidence for a greater role of central components for oxygen delivery. KEY POINTS: It has long been hypothesised that cardiovascular adaptation to endurance training is augmented following puberty. We investigated whether differences in cardiac and haematological variables exist, and to what extent, between endurance-trained versus untrained, pre- and post-peak height velocity (PHV) children, and how these central factors relate to maximal oxygen consumption. Using echocardiography to quantify left ventricular (LV) morphology and carbon monoxide rebreathing to determine blood volume and haemoglobin mass, we identified that training-related differences in LV morphology are evident in pre-PHV children, with haematological differences also observed between pre-PHV girls. However, the breadth and magnitude of cardiovascular remodelling was more pronounced post-PHV. Cardiac and haematological measures provide significant predictive models for maximal oxygen consumption ( V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ ) in children that are much stronger post-PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ before puberty.


Assuntos
Adaptação Fisiológica , Remodelação Ventricular , Adolescente , Criança , Exercício Físico , Feminino , Coração , Humanos , Masculino , Consumo de Oxigênio
7.
Exp Physiol ; 107(1): 6-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743381

RESUMO

NEW FINDINGS: What is the central question of this study? Endurance athletes demonstrate altered regional right ventricular (RV) wall mechanics, characterized by lower basal deformation, in comparison to non-athletic control subjects at rest. We hypothesized that regional adaptations at the RV base reflect an enhanced functional reserve capacity in response to haemodynamic volume loading. What is the main finding and its importance? Free wall RV longitudinal strain is elevated in response to acute volume loading in both endurance athletes and control subjects. However, the RV basal segment longitudinal strain response to acute volume infusion is greater in endurance athletes. Our findings suggest that training-induced cardiac remodelling might involve region-specific adaptation in the RV functional response to volume manipulation. ABSTRACT: Eccentric remodelling of the right ventricle (RV) in response to increased blood volume and repetitive haemodynamic load during endurance exercise is well established. Structural remodelling is accompanied by decreased deformation at the base of the RV free wall, which might reflect an enhanced functional reserve capacity in response to haemodynamic perturbation. Therefore, in this study we examined the impact of acute blood volume expansion on RV wall mechanics in 16 young endurance-trained men (aged 24 ± 3 years) and 13 non-athletic male control subjects (aged 27 ± 5 years). Conventional echocardiographic parameters and the longitudinal strain and strain rate were quantified at the basal and apical levels of the RV free wall. Measurements were obtained at rest and after 7 ml/kg i.v. Gelofusine infusion, with and without a passive leg raise. After infusion, blood volume increased by 12 ± 4 and 14 ± 5% in endurance-trained individuals versus control subjects, respectively (P = 0.264). Both endurance-trained individuals (8 ± 10%) and control subjects (7 ± 9%) experienced an increase in free wall strain from baseline, which was also similar following leg raise (7 ± 10 and 6 ± 10%, respectively; P = 0.464). However, infusion evoked a greater increase in basal longitudinal strain in endurance-trained versus control subjects (16 ± 14 vs. 6 ± 11%; P = 0.048), which persisted after leg raise (16 ± 18 vs. 3 ± 11%; P = 0.032). Apical longitudinal strain and RV free wall strain rates were not different between groups and remained unchanged after infusion across all segments. Endurance training results in a greater contribution of longitudinal myocardial deformation at the base of the RV in response to a haemodynamic volume challenge, which might reflect a greater region-specific functional reserve capacity.


Assuntos
Treino Aeróbico , Ventrículos do Coração , Adaptação Fisiológica , Adulto , Humanos , Masculino , Resistência Física/fisiologia , Função Ventricular Direita/fisiologia , Adulto Jovem
8.
Exp Physiol ; 107(11): 1225-1240, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35993480

RESUMO

NEW FINDINGS: What is the central question of this study? Does the hyperbaric, hypercapnic, acidotic, hypoxic stress of apnoea diving lead to greater pulmonary vasoreactivity and increased right heart work in apnoea divers? What is the main finding and its importance? Compared with sex- and age-matched control subjects, divers experienced significantly less change in total pulmonary resistance in response to short-duration isocapnic hypoxia. With oral sildenafil (50 mg), there were no differences in total pulmonary resistance between groups, suggesting that divers can maintain normal pulmonary artery tone in hypoxic conditions. Blunted hypoxic pulmonary vasoconstriction might be beneficial during apnoea diving. ABSTRACT: Competitive apnoea divers dive repetitively to depths >50 m. During the final portions of ascent, divers experience significant hypoxaemia. Additionally, hyperbaria during diving increases thoracic blood volume while simultaneously reducing lung volume and increasing pulmonary artery pressure. We hypothesized that divers would have exaggerated hypoxic pulmonary vasoconstriction, leading to increased right heart work owing to their repetitive hypoxaemia and hyperbaria, and that the administration of sildenafil would have a greater effect in reducing pulmonary resistance in divers. We recruited 16 divers (Divers) and 16 age- and sex-matched non-diving control subjects (Controls). Using a double-blinded, placebo-controlled, cross-over design, participants were evaluated for normal cardiac and lung function, then their cardiopulmonary responses to 20-30 min of isocapnic hypoxia (end-tidal partial pressure of O2  = 50 mmHg) were measured 1 h after ingestion of 50 mg sildenafil or placebo. Cardiac structure and cardiopulmonary function were similar at baseline. With placebo, Divers had a significantly smaller increase in total pulmonary resistance than Controls after 20-30 min isocapnic hypoxia (change -3.85 ± 72.85 vs. 73.74 ± 91.06 dyns cm-5 , P = 0.0222). With sildenafil, Divers and Controls had similar blunted increases in total pulmonary resistance after 20-30 min of hypoxia. Divers also had a significantly lower systemic vascular resistance after sildenafil in normoxia. These data indicate that repetitive apnoea diving leads to a blunted hypoxic pulmonary vasoconstriction. We suggest that this is a beneficial adaption allowing for increased cardiac output with reduced right heart work and thus reducing cardiac oxygen utilization in hypoxaemic conditions.


Assuntos
Apneia , Vasoconstrição , Humanos , Hipóxia , Pulmão , Oxigênio , Citrato de Sildenafila , Método Duplo-Cego , Estudos Cross-Over
9.
Scand J Med Sci Sports ; 32(5): 892-902, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35114040

RESUMO

It is unclear what the effect of long-term, high-volume soccer training has on left ventricular (LV) function during exercise in youth soccer players. This study evaluated changes in LV function during submaximal exercise in a group of highly trained male soccer players (SP) as they transitioned over a three-year period from pre-adolescent to adolescent athletes. Data were compared to age- and sex-matched recreationally active controls (CON) over the same time period. Twenty-two SP from two professional English Premier League youth soccer academies (age: 12.0 ± 0.3 years at start of the study) and 15 CON (age: 11.7 ± 0.3 years) were recruited. Two-dimensional echocardiography was used to quantify LV function during exercise at the same submaximal metabolic load (approx. 45%VO2peak ) across the 3 years. After controlling for growth and maturation, there were training-induced changes and superiority (p < 0.001) in cardiac index (QIndex) from year 1 in the SP compared to CON. SP (year 1: 6.13 ± 0.76; year 2: 6.94 ± 1.31; and year 3: 7.20 ± 1.81 L/min/m2 ) compared to CON (year 1: 5.15 ± 1.12; year 2: 4.67 ± 1.04; and year 3: 5.49 ± 1.06 L/min/m2 ). Similar training-induced increases were noted for mitral inflow velocity (E): SP (year 1: 129 ± 12; year 2: 143 ± 16; and year 3: 135 ± 18 cm/s) compared to CON (year 1: 113 ± 10; year 2: 111 ± 12; and year 3: 121 ± 9 cm/s). This study indicated that there was evidence of yearly, training-induced increases in left ventricular function during submaximal exercise independent from the influence of growth and maturation in elite youth SP.


Assuntos
Futebol , Adolescente , Atletas , Criança , Ecocardiografia , Exercício Físico , Humanos , Masculino , Função Ventricular Esquerda
10.
Eur J Appl Physiol ; 122(3): 801-813, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35034204

RESUMO

PURPOSE: We determined the effect of habitual endurance exercise and age on aortic pulse wave velocity (aPWV), augmentation pressure (AP) and systolic blood pressure (aSBP), with statistical adjustments of aPWV and AP for heart rate and aortic mean arterial pressure, when appropriate. Furthermore, we assessed whether muscle sympathetic nerve activity (MSNA) correlates with AP in young and middle-aged men. METHODS: Aortic PWV, AP, aortic blood pressure (applanation tonometry; SphygmoCor) and MSNA (peroneal microneurography) were recorded in 46 normotensive men who were either young or middle-aged and endurance-trained runners or recreationally active nonrunners (10 nonrunners and 13 runners within each age-group). Between-group differences and relationships between variables were assessed via ANOVA/ANCOVA and Pearson product-moment correlation coefficients, respectively. RESULTS: Adjusted aPWV and adjusted AP were similar between runners and nonrunners in both age groups (all, P > 0.05), but higher with age (all, P < 0.001), with a greater effect size for the age-related difference in AP in runners (Hedges' g, 3.6 vs 2.6). aSBP was lower in young (P = 0.009; g = 2.6), but not middle-aged (P = 0.341; g = 1.1), runners compared to nonrunners. MSNA burst frequency did not correlate with AP in either age group (young: r = 0.00, P = 0.994; middle-aged: r = - 0.11, P = 0.604). CONCLUSION: There is an age-dependent effect of habitual exercise on aortic haemodynamics, with lower aSBP in young runners compared to nonrunners only. Statistical adjustment of aPWV and AP markedly influenced the outcomes of this study, highlighting the importance of performing these analyses. Further, peripheral sympathetic vasomotor outflow and AP were not correlated in young or middle-aged normotensive men.


Assuntos
Aorta/fisiologia , Pressão Sanguínea/fisiologia , Músculo Esquelético/inervação , Resistência Física/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Fatores Etários , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade
11.
Eur J Appl Physiol ; 121(5): 1419-1429, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33616754

RESUMO

Cardiac modifications to training are a product of the genetic pre-disposition for adaptation and the repetitive haemodynamic loads that are placed on the myocardium. Elite pre-adolescent athletes are exposed to high-intensity training at a young age with little understanding of the physiological and clinical consequences. It is unclear how right ventricular (RV) structure and function may respond to this type of stimulus. The aim of this study was to compare RV structure and strain across the cardiac cycle and within individual segments in elite soccer players (SP) and controls (CON). METHODS: Twenty-two highly trained, male pre-adolescent SP and 22 age-and sex-matched recreationally active individuals CON were investigated using 2D echocardiography, including myocardial speckle tracking to assess basal, mid-wall, apical and global longitudinal strain and strain rate during systole (SRS) and diastole (SRE and SRA). RESULTS: greater RV cavity size was identified in the SP compared to CON (RVD1 SP: 32.3 ± 3.1 vs. CON: 29.6 ± 2.8 (mm/m2)0.5; p = 0.005). No inter-group differences were noted for peak global RV strain (SP: - 28.6 ± 4.9 vs CON: - 30.3 ± 4.0%, p = 0.11). Lower mid-wall strain was demonstrated in the SP compared to CON (SP: - 27.9 ± 5.8 vs. CON: - 32.2 ± 4.4%, p = 0.007). CONCLUSION: Soccer training has the potential to increase RV size in pre-adolescent players. The unique segmental analyses used in this study have identified inter-group differences that were masked by global strain evaluations. The clinical and physiological implications of these findings warrant further investigation.


Assuntos
Adaptação Fisiológica/fisiologia , Futebol/fisiologia , Função Ventricular Direita/fisiologia , Atletas , Estudos de Casos e Controles , Criança , Humanos , Masculino , Educação Física e Treinamento
12.
Health Educ Res ; 36(3): 362-373, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982097

RESUMO

The benefits of physical activity in school settings and its impact on health and academic outcomes are of interest from public health and educational contexts. This study investigates how physically active learning (PAL): (i) contributes to children's physical activity levels, (ii) impacts on academic outcomes and (iii) influences children's focus and concentration, defined as time on task (ToT). METHODS: Over a 2-week period, participants were exposed to PAL and non-active learning (NAL) lessons in a counterbalanced design. Physiological responses and ToT behaviour were recorded throughout PAL and NAL lessons. Academic outcomes were assessed the week before, during and the week after each mode of delivery. RESULTS: Children were more active during PAL (196�542 steps per week) compared to NAL (152�395 steps per week, P = 0.003). The physiological demands of PAL (73% HRmax), were significantly greater (P < 0.001) than NAL (51% HRmax). Children's ToT was significantly higher (P < 0.001) with PAL (97%) than NAL (87%). There were no differences in academic outcomes when PAL and NAL were compared. CONCLUSIONS: Modest levels of PAL increased activity levels. No evidence was found to suggest PAL had a negative effect on children's academic outcomes, and PAL could positively impact on children's concentration.


Assuntos
Aprendizagem Baseada em Problemas , Instituições Acadêmicas , Criança , Escolaridade , Exercício Físico , Humanos
13.
Am J Physiol Heart Circ Physiol ; 319(2): H370-H376, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32648822

RESUMO

Changes in the arterial baroreflex arc contribute to elevated sympathetic outflow and altered reflex control of blood pressure with human aging. Using ultrasound and sympathetic microneurography (muscle sympathetic nerve activity, MSNA) we investigated the relationships between aortic and carotid artery wall tension (indices of baroreceptor activation) and the vascular sympathetic baroreflex operating point (OP; MSNA burst incidence) in healthy, normotensive young (n = 27, 23 ± 3 yr) and middle-aged men (n = 22, 55 ± 4 yr). In young men, the OP was positively related to the magnitude and rate of unloading and time spent unloaded in the aortic artery (r = 0.56, 0.65, and 0.51, P = 0.02, 0.003, and 0.03), but not related to the magnitude or rate of unloading or time spent unloaded in the carotid artery (r = -0.32, -0.07, and 0.06, P = 0.25, 0.81, and 0.85). In contrast, in middle-aged men, the OP was not related to either the magnitude or rate of unloading or time spent unloaded in the aortic (r = 0.22, 0.21, and 0.27, P = 0.41, 0.43, and 0.31) or carotid artery (r = 0.06, 0.28, and -0.01; P = 0.48, 0.25, and 0.98). In conclusion, in young men, aortic unloading mechanics may play a role in determining the vascular sympathetic baroreflex OP. In contrast, in middle-aged men, barosensory vessel unloading mechanics do not appear to determine the vascular sympathetic baroreflex OP and, therefore, do not contribute to age-related arterial baroreflex resetting and increased resting MSNA.NEW & NOTEWORTHY We assessed the influence of barosensory vessel mechanics (magnitude and rate of unloading and time spent unloaded) as a surrogate for baroreceptor unloading. In young men, aortic unloading mechanics are important in regulating the operating point of the vascular sympathetic baroreflex, whereas in middle-aged men, these arterial mechanics do not influence this operating point. The age-related increase in resting muscle sympathetic nerve activity does not appear to be driven by altered baroreceptor input from stiffer barosensory vessels.


Assuntos
Envelhecimento , Aorta/inervação , Pressão Arterial , Barorreflexo , Artérias Carótidas/inervação , Músculo Esquelético/inervação , Pressorreceptores/fisiologia , Adulto , Fatores Etários , Aorta/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Frequência Cardíaca , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Ultrassonografia , Adulto Jovem
14.
Am J Physiol Heart Circ Physiol ; 319(3): H632-H641, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32772543

RESUMO

Left ventricular (LV) structural remodeling following athletic training has been evidenced through training-specific changes in wall thickness and geometry. Whether the LV response to changes in hemodynamic load also adapts in a training-specific manner is unknown. Using echocardiography, we examined LV responses of endurance-trained (n = 15), resistance-trained (n = 14), and nonathletic men (n = 13) to 1) 20, 40, and 60% one repetition-maximum (1RM), leg-press exercise and 2) intravascular Gelofusine infusion (7 mL/kg) with passive leg raise. While resting heart rate was lower in endurance-trained participants versus controls (P = 0.001), blood pressure was similar between groups. Endurance-trained individuals had lower wall thickness but greater LV mass relative to body surface area versus controls, with no difference between resistance-trained individuals and controls. Leg press evoked a similar increase in blood pressure; however, resistance-trained participants preserved stroke volume (SV; -3 ± 8%) versus controls at 60% 1RM (-15 ± 7%, P = 0.001). While the maintenance of SV was related to the change in longitudinal strain across all groups (R = 0.537; P = 0.007), time-to-peak strain was maintained in resistance-trained but delayed in endurance-trained individuals (1 vs. 12% delay; P = 0.021). Volume infusion caused a similar increase in end-diastolic volume (EDV) and SV across groups, but leg raise further increased EDV only in endurance-trained individuals (5 ± 5 to 8 ± 5%; P = 0.018). Correlation analysis revealed a relationship between SV and longitudinal strain following infusion and leg raise (R = 0.334, P = 0.054); however, we observed no between-group differences in longitudinal myocardial mechanics. In conclusion, resistance-trained individuals better maintained SV during pressure loading, whereas endurance-trained individuals demonstrated greater EDV reserve during volume loading. These data provide novel evidence of training-specific LV functional remodeling.NEW & NOTEWORTHY Training-specific functional remodeling of the LV in response to different loading conditions has been recently suggested, but not experimentally tested in the same group of individuals. Our data provide novel evidence of a dichotomous, training-specific LV adaptive response to hemodynamic pressure or volume loading.


Assuntos
Cardiomegalia Induzida por Exercícios , Coração/fisiologia , Resistência Física , Treinamento Resistido , Função Ventricular Esquerda , Remodelação Ventricular , Adaptação Fisiológica , Adulto , Volume Sanguíneo , Coração/diagnóstico por imagem , Hemodinâmica , Humanos , Infusões Intravenosas , Contração Isométrica , Masculino , Substitutos do Plasma/administração & dosagem , Poligelina/administração & dosagem , Adulto Jovem
15.
Exp Physiol ; 105(8): 1396-1407, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578897

RESUMO

NEW FINDINGS: What is the central question of this study? Carotid artery peak circumferential strain (PCS) and strain rate attenuate with age, but appear to be modulated by cardiorespiratory fitness status in young males. However, the relationship between habitual endurance exercise (running) and these parameters has not been studied in young and middle-aged men. What is the main finding and its importance? Young and middle-aged runners exhibited elevated PCS and systolic strain rate (S-SR) compared with non-runners, but habitual running did not influence diastolic strain rate (D-SR). Habitual exercise is associated with comparable improvements in carotid strain parameters in young and middle-aged men, but the age-related decline in PCS and S-SR might be more amenable to habitual endurance exercise than D-SR. ABSTRACT: Central arterial stiffness is an independent predictor of cardiovascular risk that can be modified by exercise training. However, conventional local measures of carotid artery stiffness display conflicting responses to habitual endurance exercise in young and older adults. Two-dimensional (2D)-Strain imaging of the common carotid artery (CCA) quantifies circumferential deformation (strain) of the arterial wall across the cardiac cycle, which is more sensitive at detecting age-related alterations in CCA stiffness than conventional methods. Therefore, the study was designed to examine the relationship between habitual endurance exercise (running) and CCA 2D-Strain parameters in young and middle-aged men. Short-axis ultrasound images of the CCA were obtained from 13 young non-runners [23 years of age (95% confidence interval: 21, 26 years of age)], 19 young runners [24 (22, 26) years of age], 13 middle-aged non-runners [54 (52, 56) years of age] and 19 middle-aged runners [56 (54, 58) years of age]. Images were analysed for peak circumferential strain (PCS; magnitude of deformation) and systolic and diastolic strain rates (S-SR and D-SR; deformation velocity), and group differences were examined via two-way ANOVA. PCS, S-SR and D-SR were attenuated in middle-aged men compared with young men (all P ≤ 0.001). PCS and S-SR were elevated in young and middle-aged runners when compared with non-runners (P = 0.002 and P = 0.009, respectively), but no age × training status interaction was observed. In contrast, there was no influence of habitual running on D-SR. Habitual exercise is associated with comparable improvements in CCA 2D-Strain parameters in young and middle-aged men, but the age-related decline in PCS and S-SR might be more amenable to habitual endurance exercise than D-SR.


Assuntos
Fatores Etários , Artéria Carótida Primitiva/fisiologia , Exercício Físico/fisiologia , Resistência Física , Rigidez Vascular , Adulto , Aptidão Cardiorrespiratória , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Onda de Pulso , Corrida/fisiologia , Ultrassonografia , Adulto Jovem
16.
Am J Physiol Heart Circ Physiol ; 317(1): H181-H189, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050557

RESUMO

This study focused on the influence of habitual endurance exercise training (i.e., committed runner or nonrunner) on the regulation of muscle sympathetic nerve activity (MSNA) and arterial pressure in middle-aged (50 to 63 yr, n = 23) and younger (19 to 30 yr; n = 23) normotensive men. Hemodynamic and neurophysiological assessments were performed at rest. Indices of vascular sympathetic baroreflex function were determined from the relationship between spontaneous changes in diastolic blood pressure (DBP) and MSNA. Large vessel arterial stiffness and left ventricular stroke volume also were measured. Paired comparisons were performed within each age category. Mean arterial pressure and basal MSNA bursts/min were not different between age-matched runners and nonrunners. However, MSNA bursts/100 heartbeats, an index of baroreflex regulation of MSNA (vascular sympathetic baroreflex operating point), was higher for middle-aged runners (P = 0.006), whereas this was not different between young runners and nonrunners. The slope of the DBP-MSNA relationship (vascular sympathetic baroreflex gain) was not different between groups in either age category. Aortic pulse wave velocity was lower for runners of both age categories (P < 0.03), although carotid ß-stiffness was lower only for middle-aged runners (P = 0.04). For runners of both age categories, stroke volume was larger, whereas heart rate was lower (both P < 0.01). In conclusion, we suggest that neural remodeling and upward setting of the vascular sympathetic baroreflex compensates for cardiovascular adaptations after many years committed to endurance exercise training, presumably to maintain arterial blood pressure stability. NEW & NOTEWORTHY Exercise training reduces muscle sympathetic burst activity in disease; this is often extrapolated to infer a similar effect in health. We demonstrate that burst frequency of middle-aged and younger men committed to endurance training is not different compared with age-matched casual exercisers. Notably, well-trained, middle-aged runners display similar arterial pressure but higher sympathetic burst occurrence than untrained peers. We suggest that homeostatic plasticity and upward setting of the vascular sympathetic baroreflex maintains arterial pressure stability following years of training.


Assuntos
Pressão Arterial , Barorreflexo , Vasos Sanguíneos/inervação , Músculo Esquelético/inervação , Resistência Física , Corrida , Sistema Nervoso Simpático/fisiopatologia , Adaptação Fisiológica , Adulto , Fatores Etários , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
17.
Lung ; 197(1): 15-19, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390109

RESUMO

PURPOSE: While the static and dynamic lung volumes of active swimmers is often greater than the predicted volume of similarly active non-swimmers, little is known if their ventilatory response to exercise is also different. METHODS: Three groups of anthropometrically matched male adults were recruited, daily active swimmers (n = 15), daily active in fields sport (Rugby and Football) (n = 15), and recreationally active (n = 15). Forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and maximal voluntary ventilation (MVV) was measured before and after exercise to volitional exhaustion. RESULTS: Swimmers had significantly larger FVC (6.2 ± 0.6 l, 109 ± 9% pred) than the other groups (5.6 ± 0.5 l, 106 ± 13% pred, 5.5 ± 0.8, 99% pred, the sportsmen and recreational groups, respectively). FEV1 and MVV were not different. While at peak exercise, all groups reached their ventilatory reserve (around 20%), the swimmers had a greater minute ventilation rate than the recreational group (146 ± 19 vs 120 ± 87 l/min), delivering this volume by breathing deeper and slower. CONCLUSIONS: The swimmers utilised their larger static volumes (FVC) differently during exercise by meeting their ventilation volume through long and deep breaths.


Assuntos
Atletas , Pulmão/fisiologia , Aptidão Física , Ventilação Pulmonar , Natação , Adaptação Fisiológica , Adulto , Tolerância ao Exercício , Futebol Americano , Volume Expiratório Forçado , Humanos , Masculino , Ventilação Voluntária Máxima , Volume de Ventilação Pulmonar , Fatores de Tempo , Capacidade Vital , Adulto Jovem
19.
Exp Physiol ; 103(4): 495-501, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29349824

RESUMO

NEW FINDINGS: What is the central question of this study? A reduction in left ventricular (LV) filling, and concomitant increase in heart rate, augments LV mechanics to maintain stroke volume (SV); however, the impact of reduced LV filling in isolation on SV and LV mechanics is currently unknown. What is the main finding and its importance? An isolated decrease in LV filling did not provoke a compensatory increase in mechanics to maintain SV; in contrast, LV mechanics and SV were reduced. These data indicate that when LV filling is reduced without changes in heart rate, LV mechanics do not compensate to maintain SV. ABSTRACT: An acute non-invasive reduction in preload has been shown to augment cardiac mechanics to maintain stroke volume and cardiac output. Such interventions induce concomitant changes in heart rate, whereas blood volume extraction reduces preload without changes in heart rate. Therefore, the purpose of this study was to determine whether a preload reduction in isolation resulted in augmented stroke volume achieved via enhanced cardiac mechanics. Nine healthy volunteers (four female, age 29 ± 11 years) underwent echocardiography for the assessment of left ventricular (LV) volumes and mechanics in a supine position at baseline and end extraction after the controlled removal of 25% of total blood volume (1062 ± 342 ml). Arterial blood pressure was monitored continuously by a pressure transducer attached to an indwelling radial artery catheter. Heart rate and total peripheral resistance were unchanged from baseline to end extraction, but systolic blood pressure was reduced (from 148 to 127 mmHg). From baseline to end extraction there were significant reductions in left ventricular end-diastolic volume (from 89 to 71 ml) and stroke volume (from 56 to 37 ml); however, there was no change in LV twist, basal or apical rotation. In contrast, LV longitudinal strain (from -20 to -17%) and basal circumferential strain (from -22 to -19%) were significantly reduced from baseline to end extraction. In conclusion, a reduction in preload during blood volume extraction does not result in compensatory changes in stroke volume or cardiac mechanics. Our data suggest that LV strain is dependent on LV filling and consequent geometry, whereas LV twist could be mediated by heart rate.


Assuntos
Volume Sanguíneo/fisiologia , Ventrículos do Coração/fisiopatologia , Função Ventricular Esquerda/fisiologia , Adulto , Pressão Arterial/fisiologia , Débito Cardíaco/fisiologia , Ecocardiografia/métodos , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Contração Miocárdica/fisiologia , Volume Sistólico/fisiologia
20.
Scand J Med Sci Sports ; 28(11): 2330-2338, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29968944

RESUMO

It is unclear, what the underlying cardiovascular mechanisms are that give rise to the high level of aerobic fitness seen in youth soccer players. The aim of the study was to evaluate global and regional markers of systolic and diastolic function in a group of pre-adolescent soccer players during an incremental exercise test. Twenty-two, male soccer players (SP) from two professional soccer clubs (age: 12.0 ± 0.3 years) volunteered for the study. Fifteen recreationally active boys (CON), of similar age (age: 11.7 ± 0.2 years) were also recruited. All boys underwent a cycle ergometer test to exhaustion. Cardiac dimensions were determined using M-mode echocardiography. During submaximal and maximal exercise, continuous-wave Doppler ultrasound techniques were used to derive stroke volume (SVIndex). Tissue-Doppler imaging was used to quantify systolic (S'adj) and diastolic function (E; E'adj and E/E') at rest and both submaximal and maximal exercise intensities. Speckle tracking echocardiography was used to determine peak longitudinal ε at submaximal exercise intensities. SP demonstrated significantly (P ≤ 0.05) greater peak VO2 values than CON (SP: 48.0 ± 5.0 vs CON: 40.1 ± 7.5 mL/kg/min). Allometrically scaled to body surface area left ventricular end-diastolic volume (LVEDV) was larger (P ≤ 0.05) in the SP (51.3 ± 9.0) compared to CON (44.6 ± 5.8 mL·BSA1.5 ). At the same relative, submaximal exercise intensities, the SP demonstrated greater SVIndex, cardiac output (QIndex), and E. No differences were noted for peak longitudinal ε during submaximal exercise. Factors that augment pre-load and LV volume appear to determine the superior aerobic fitness seen in the soccer players.


Assuntos
Exercício Físico/fisiologia , Função Ventricular Esquerda , Atletas , Débito Cardíaco , Criança , Estudos Transversais , Diástole , Ecocardiografia Doppler , Teste de Esforço , Ventrículos do Coração/diagnóstico por imagem , Humanos , Masculino , Estudos Prospectivos , Futebol , Volume Sistólico , Sístole
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA