Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 33(6): 3931-3940, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36600124

RESUMO

OBJECTIVES: This study aims to predict the high-grade pattern (HGP) of stage IA lung invasive adenocarcinoma (IAC) based on the high-resolution CT (HRCT) features. METHODS: The clinical, pathological, and HRCT imaging data of 457 patients (from bicentric) with pathologically confirmed stage IA IAC (459 lesions in total) were retrospectively analyzed. The 459 lesions were classified into high-grade pattern (HGP) (n = 101) and non-high-grade pattern (n-HGP) (n = 358) groups depending on the presence of HGP (micropapillary and solid) in pathological results. The clinical and pathological data contained age, gender, smoking history, tumor stage, pathological type, and presence or absence of tumor spread through air spaces (STAS). CT features consisted of lesion location, size, density, shape, spiculation, lobulation, vacuole, air bronchogram, and pleural indentation. The independent predictors for HGP were screened by univariable and multivariable logistic regression analyses. The clinical, CT, and clinical-CT models were constructed according to the multivariable analysis results. RESULTS: The multivariate analysis suggested the independent predictors of HGP, encompassing tumor size (p = 0.001; OR = 1.090, 95% CI 1.035-1.148), density (p < 0.001; OR = 9.454, 95% CI 4.911-18.199), and lobulation (p = 0.002; OR = 2.722, 95% CI 1.438-5.154). The AUC values of clinical, CT, and clinical-CT models for predicting HGP were 0.641 (95% CI 0.583-0.699) (sensitivity = 69.3%, specificity = 79.2%), 0.851 (95% CI 0.806-0.896) (sensitivity = 79.2%, specificity = 79.6%), and 0.852 (95% CI 0.808-0.896) (sensitivity = 74.3%, specificity = 85.8%). CONCLUSION: The logistic regression model based on HRCT features has a good diagnostic performance for the high-grade pattern of stage IA IAC. KEY POINTS: • The AUC values of clinical, CT, and clinical-CT models for predicting high-grade patterns were 0.641 (95% CI 0.583-0.699), 0.851 (95% CI 0.806-0.896), and 0.852 (95% CI 0.808-0.896). • Tumor size, density, and lobulation were independent predictive markers for high-grade patterns. • The logistic regression model based on HRCT features has a good diagnostic performance for the high-grade patterns of invasive adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Pulmão/patologia , Invasividade Neoplásica/patologia
2.
Front Neurol ; 13: 955378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237620

RESUMO

Background: Cerebral microbleeds (CMBs) are common in the hypertensive population and can only be detected with magnetic resonance imaging (MRI). The anticoagulation and thrombolytic regimens for patients with >5 CMBs are different from those for patients with ≤ 5 CMBs. However, MRI is not suitable for evaluating CMBs in patients with MRI contraindications or acute ischemic stroke urgently requiring thrombolysis. We aimed to develop and validate a nomogram combining clinical and brain computed tomography (CT) characteristics for predicting >5 CMBs in a hypertensive population. Materials and methods: In total, 160 hypertensive patients from 2016 to 2020 who were confirmed by MRI to have >5 (77 patients) and ≤ 5 CMBs (83) were retrospectively analyzed as the training cohort. Sixty-four hypertensive patients from January 2021 to February 2022 were included in the validation cohort. Multivariate logistic regression was used to evaluate >5 CMBs. A combined nomogram was constructed based on the results, while clinical and CT models were established according to the corresponding characteristics. Receiver operating characteristic (ROC) and calibration curves and decision curve analysis (DCA) were used to verify the models. Results: In the multivariable analysis, the duration of hypertension, level of homocysteine, the number of lacunar infarcts (LIs), and leukoaraiosis (LA) score were included as factors associated with >5 CMBs. The clinical model consisted of the duration of hypertension and level of homocysteine, while the CT model consisted of the number of LIs and LA. The combined model consisted of the duration of hypertension, level of homocysteine, LI, and LA. The combined model achieved an area under the curve (AUC) of 0.915 (95% confidence interval [CI]: 0.860-0.953) with the training cohort and 0.887 (95% CI: 0.783-0.953) with the validation cohort, which were higher than those of the clinical model [training cohort: AUC, 0.797 (95% CI: 0.726, 0.857); validation cohort: AUC, 0.812 (95% CI: 0.695, 0.899)] and CT model [training cohort: AUC, 0.884 (95% CI: 0.824, 0.929); validation cohort: AUC, 0.868 (95% CI: 0.760, 0.940)]. DCA showed that the clinical value of the combined model was superior to that of the clinical model and CT model. Conclusion: A combined model based on clinical and CT characteristics showed good diagnostic performance for predicting >5 CMBs in hypertensive patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA