Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 96(2): e20230007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808873

RESUMO

This study aimed to recognize the biogeographic patterns, richness, and diversity levels of the Brazilian endemic genus Orthophytum and identify their biotic components through a parsimony analysis of endemicity (PAE), to better understand the evolutionary history of this group and develop strategies for the conservation of its species. We prepared a database for the 54 currently known species of Orthophytum, including their geographical locations as obtained from digital databases of the principal herbaria of Brazil, Europe, and the USA. A parsimony analysis of endemicity (PAE) was used to delimit the areas of endemism based on two grids' sizes (1º x 1º and 2º × 2º). The majority rule consensus tree resulting from the PAE indicated three areas of endemism with high bootstrap, diversity, and richness indices: the northern portion of the Espinhaço Range, the southern portion of the Espinhaço Range, and the central portion of the Atlantic Forest. The recognition of those distribution patterns reveals a high number of microendemic species, which is discussed here.


Assuntos
Biodiversidade , Bromeliaceae , Brasil , Bromeliaceae/classificação
2.
Mol Phylogenet Evol ; 77: 54-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24657431

RESUMO

The saxicolous genus Orthophytum (∼60 species, Bromeliaceae) is endemic to eastern Brazil and diversified in xeric habitats of the Atlantic Rainforest, Caatinga and campos rupestres. Within the genus, two main groups are discerned based on the presence or absence of a pedunculate inflorescence, which are further subdivided into several morphological subgroups. However, these systematic hypotheses have not yet been tested in a molecular phylogenetic framework. Here we present the first phylogenetic analysis of Orthophytum using nuclear and plastid markers (phytochrome C, and trnH-psbA and trnL-trnF spacers). Forty species representing the two main groups and all subgroups of Orthophytum, and the related genera Cryptanthus (8 spp.) and Lapanthus (2 spp.) were analyzed. The phylogenetic reconstruction revealed a well-supported clade termed Eu-Orthophytum, containing species with pedunculate inflorescences only. The Orthophytum species with sessile inflorescence formed two clades: (1) the amoenum group and (2) the vagans group plus O. foliosum, the only pedunculate Orthophytum species found outside Eu-Orthophytum. The vagans clade is in sister group position to Eu-Orthophytum. Within the latter, the subgroup mello-barretoi was sister to the most diversified clade, termed Core Orthophytum. Morphological character state reconstructions of floral characters used in previous taxonomic treatments as key diagnostic characters (penduncle presence, corolla form, and petal appendage form) showed different levels of homoplasy.


Assuntos
Bromeliaceae/genética , Evolução Molecular , Filogenia , Proteínas de Plantas/genética , Teorema de Bayes , Bromeliaceae/anatomia & histologia , Bromeliaceae/classificação , Plastídeos/genética
3.
Appl Plant Sci ; 2(3)2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25202607

RESUMO

PREMISE OF THE STUDY: Microsatellite primers were developed for Orthophytum ophiuroides, a rupicolous bromeliad species endemic to neotropical rocky fields. These microsatellite loci will be used to investigate population differentiation and species cohesion in such fragmented environments. The loci were tested for cross-amplification in related bromeliad species. • METHODS AND RESULTS: Eleven polymorphic microsatellite markers were isolated and characterized from an enriched library of O. ophiuroides. The loci were tested on 42 individuals from two populations of this species. The number of alleles per locus ranged from three to nine and the expected and observed heterozygosities ranged from 0.167 to 0.870 and from 0.369 to 0.958, respectively. Seven loci successfully amplified in other related bromeliad species. • CONCLUSIONS: Our results suggest that the microsatellite loci developed here will be useful to assess genetic diversity and gene flow in O. ophiuroides for the investigation of population differentiation and species cohesion in neotropical mountainous habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA