Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445981

RESUMO

Rice false smut, caused by the fungal pathogen Ustilaginoidea virens, is a worldwide rice fungal disease. However, the molecular mechanism of the pathogenicity of the fungus U. virens remains unclear. To understand the molecular mechanism of pathogenesis of the fungus U. virens, we performed an integrated analysis of the transcriptome and metabolome of strongly (S) and weakly (W) virulent strains both before and after the infection of panicles. A total of 7932 differential expressed genes (DEGs) were identified using transcriptome analysis. Gene ontology (GO) and metabolic pathway enrichment analysis indicated that amino acid metabolism, autophagy-yeast, MAPK signaling pathway-yeast, and starch and sucrose metabolism were closely related to the pathogenicity of U. virens. Genes related to pathogenicity were significantly upregulated in the strongly virulent strain, and were ATG, MAPK, STE, TPS, and NTH genes. However, genes involved in the negative regulation of pathogenesis were significantly downregulated and contained TOR kinase, TORC1, and autophagy-related protein genes. Metabolome analysis identified 698 differentially accumulated metabolites (DAMs), including 13 categories of organic acids and derivatives, lipids and lipid-like molecules, organoheterocyclic compounds. The significantly enriched pathways of DAMs mainly included amino acids and carbohydrates, and they accumulated after infection by the S strain. To understand the relevance of DEGs and DAMs in the pathogenicity of U. virens, transcriptomic and metabolomic data were integrated and analyzed. These results further confirmed that the pathogenesis of U. virens was regulated by DEGs and DAMs related to these four pathways, involving arginine and proline metabolism, lysine biosynthesis, alanine, aspartate and glutamate metabolism, and starch and sugar metabolism. Therefore, we speculate that the pathogenicity of U. virens is closely related to the accumulation of amino acids and carbohydrates, and to the changes in the expression of related genes.


Assuntos
Hypocreales , Oryza , Ustilaginales , Transcriptoma , Oryza/genética , Saccharomyces cerevisiae/genética , Perfilação da Expressão Gênica , Aminoácidos/genética , Carboidratos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Phytother Res ; 33(9): 2378-2386, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31270886

RESUMO

Excessive oxidative stress, which can amplify inflammatory responses, is involved in the pathologic progression of knee osteoarthritis. Diosmin is known to possess a variety of biological functions such as antiinflammatory and antioxidant activities. We therefore demonstrated the chondroprotective potentials of diosmin on human articular chondrocytes under oxidative stress. The cytotoxicity of diosmin (5, 10, 50, and 100 µM) to chondrocytes was first evaluated. Subsequently, the cells were treated with diosmin (5 and 10 µM) after hydrogen peroxide (H2 O2 ) exposure. We found that the cytotoxicity of diosmin occurred in a dose-dependent manner (10, 50, and 100 µM), and low-dose diosmin (5 µM) slightly impaired cell viability. Diosmin supplementations (5 and 10 µM) did not show beneficial effects on mitochondrial activity, cytotoxicity, proliferation, and survival and the cell senescence was ameliorated in H2 O2 -exposed chondrocytes. On the other hand, diosmin down-regulated the mRNA levels of iNOS, COX-2, IL-1ß, COL1A1, MMP-3, and MMP-9; up-regulated TIMP-1 and SOX9; and improved COL2A1 in chondrocytes under oxidative stresses. Furthermore, diosmin also regulated glutathione reductase and glutathione peroxidase of H2 O2 -exposed chondrocytes. In conclusion, diosmin displayed a remarkable antiinflammatory effect compared with the antioxidant capacity on human chondrocytes. Diosmin can maintain the homeostasis of extracellular matrix of articular cartilage.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Diosmina/uso terapêutico , Osteoartrite do Joelho/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Idoso , Sobrevivência Celular , Diosmina/farmacologia , Humanos , Pessoa de Meia-Idade
3.
Adv Exp Med Biol ; 1099: 125-139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30306520

RESUMO

Opioid analgesics remain the most effective and widely used analgesics for the management of moderate to severe pain, including cancer pain and chronic non-cancer pain. However, the efficacy of long-term opioid analgesics is attenuated by tolerance and/or hyperalgesia after long-term use, preventing adequate pain relief under stable opioid dosages for chronic pain patients. Classical neuron-centered concepts about tolerance, such as internalization of opioid receptors, upregulation of N-methyl-D-aspartate receptor function, or downregulation of glutamate transporter activity, can only partially explain the phenomenon of tolerance. Recent evidence revealing glial activation and upregulation of inflammatory mediators in the rodent central nervous system has confirmed the pivotal role of neuroinflammation in neuropathic pain or opioid tolerance, or both. However, human evidence is still sparse.Based on our clinical practice, we conducted translational research by investigating the cerebrospinal fluid (CSF) cytokine and chemokine profiles of opioid-tolerant patients after research ethic committee approval. CSF samples from opioid-tolerant patients and opioid-naive subjects were compared. We found CXCL1, CXCL12, and leukemia inhibitory factor (LIF) were significantly upregulated among the opioid-tolerant patients and positively correlated with the opioid dosage.We translated these findings back to lab animal experiment; after induction of tolerance by morphine infusion, the spinal cord expression of CXCL1, CXCL12, and LIF were all upregulated. Although CXCL1 and CXCL12 infusion alone did not affect baseline tail-flick latency, morphine analgesic efficacy dropped significantly after intrathecal infusion of CXCL1 and CXCL12. After establishing tolerance by intrathecal continuous infusion of morphine, tolerance development was accelerated by co-administration of CXCL1 and CXCL12. In parallel, the effect was attenuated by co-administration of CXCL1- or CXCL12-neutralizing antibody or concordant receptor antagonists.On the contrary, although chronic morphine administration still induced LIF upregulation in rat spinal cords, intrathecal injection of LIF potentiated the analgesic action of morphine and delayed the development of morphine tolerance. Upregulation of endogenously released LIF by long-term use of opioids might counterbalance the tolerance induction effects of other pro-inflammatory cytokines.CXCL1, CXCL12, and LIF are upregulated in both opioid-tolerant patients and rodents. The onset and extent of opioid tolerance were affected by modulating the intrathecal CXCL1/CXCR2, CXCL12/CXCR4, and LIF signaling and could be novel drug targets for the treatment of opioid tolerance.


Assuntos
Analgésicos Opioides/farmacologia , Quimiocina CXCL12/fisiologia , Quimiocina CXCL1/fisiologia , Tolerância a Medicamentos , Inflamação/fisiopatologia , Fator Inibidor de Leucemia/fisiologia , Animais , Humanos , Ratos , Medula Espinal/efeitos dos fármacos
5.
Biomolecules ; 14(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254679

RESUMO

Rice false smut (RFS) caused by the fungus Ustilaginoidea virens (Cook) leads to serious yield losses in rice. Identification of the gene or quantitative trait loci (QTLs) is crucial to resistance breeding and mitigation of RFS damage. In this study, we crossed a resistant variety, IR77298-14-1-2::IRGC117374-1, with a susceptible indica cultivar, 9311, and evaluated recombinant inbred lines in a greenhouse. The genetic analysis showed that the RFS resistance of IR77298-14-1-2::IRGC117374-1 was controlled by multiple recessive loci. We identified a novel QTL, qRFS12.01, for RFS resistance in IR77298-14-1-2::IRGC117374-1 by combining bulked segregant analysis with whole genome resequencing (BSA-seq) and simple sequence repeat (SSR) marker mapping approaches. The phenotypic effect of qRFS12.01 on RFS resistance reached 28.74%, suggesting that SSR markers linked to qRFS12.01 are valuable for marker-assisted breeding of RFS resistance in rice. The prediction of putative candidate genes within qRFS12.01 revealed five disease resistance proteins containing NB-ARC domains. In conclusion, our findings provide a new rice chromosome region carrying genes/QTLs for resistance to RFS.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Resistência à Doença/genética , Repetições de Microssatélites/genética
6.
Toxicol In Vitro ; 97: 105806, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432573

RESUMO

INTRODUCTION: Statins have demonstrated chondroprotective effects by reducing inflammation and mitigating extracellular matrix degradation. However, statins are also reported to be cytotoxic to several types of cells. Early-onset osteoarthritis (OA) is characterized by synovial inflammation, which adversely affects hyaluronan (HA) production in fibroblast-like synoviocytes (FLSs). Nevertheless, the precise effects of statins on the synovium remain unclear. METHODS: This study investigated the impact of lovastatin on human FLSs, and HA secretion-related genes, signaling pathways, and production were evaluated. RESULTS: The findings revealed that high doses of lovastatin (20 or 40 µM) decreased FLS viability and increased cell death. FLS proliferation ceased when cultured in a medium containing 5 or 10 µM lovastatin. mRNA expression analysis demonstrated that lovastatin (5 and 10 µM) upregulated the gene level of hyaluronan synthase 1 (HAS1), HAS2, and proteoglycan 4 (PRG4), but not HAS3. While the expression of multidrug resistance-associated protein 5 transporter gene remained unaffected, both inward-rectifying potassium channel and acid-sensing ion channel 3 were upregulated. Western blot further confirmed that lovastatin increased the production of HAS1 and PRG4, and activated the PKC-α, ERK1/2, and p38-MAPK signaling pathways. Additionally, lovastatin elevated intracellular cAMP levels and HA production in FLSs. CONCLUSION: Lovastatin impairs cellular proliferation but enhances HA production in human FLSs.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , Ácido Hialurônico/metabolismo , Lovastatina/farmacologia , Lovastatina/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fibroblastos/metabolismo , Proliferação de Células , Inflamação/metabolismo , Células Cultivadas
7.
Osteoporos Int ; 24(8): 2201-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23400250

RESUMO

UNLABELLED: Dextromethorphan (DXM), a commonly used antitussive, is a dextrorotatory morphinan. Here, we report that DXM inhibits the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption by abrogating the activation of NF-κB signalling in vitro. Oral administration of DXM ameliorates ovariectomy (OVX)-induced osteoporosis in vivo. INTRODUCTION: DXM was reported to possess anti-inflammatory properties through inhibition of the release of pro-inflammatory factors. However, the potential role and action mechanism of DXM on osteoclasts and osteoblasts remain unclear. In this study, in vitro and in vivo studies were performed to investigate the potential effects of DXM on osteoclastogenesis and OVX-induced bone loss. METHODS: Osteoclastogenesis was examined by the TRAP staining, pit resorption, TNF-α release, and CCR2 and CALCR gene expression. Osteoblast differentiation was analyzed by calcium deposition. Osteogenic and adipogenic genes were measured by real-time PCR. Signaling pathways were explored using Western blot. ICR mice were used in an OVX-induced osteoporosis model. Tibiae were measured by µCT and serum markers were examined with ELISA kits. RESULTS: DXM inhibited RANKL-induced osteoclastogenesis. DXM mainly inhibited osteoclastogenesis via abrogation of IKK-IκBα-NF-κB pathways. However, a higher dosage of DXM antagonized the differentiation of osteoblasts via the inhibition of osteogenic signals and increase of adipogenic signals. Oral administration of DXM (20 mg/kg/day) partially reduced trabecular bone loss in ovariectomized mice. CONCLUSION: DXM inhibits osteoclast differentiation and activity by affecting NF-κB signaling. Therefore, DXM at suitable doses may have new therapeutic applications for the treatment of diseases associated with excessive osteoclastic activity.


Assuntos
Anti-Inflamatórios/farmacologia , Dextrometorfano/farmacologia , Osteoclastos/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Reabsorção Óssea/etiologia , Reabsorção Óssea/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dextrometorfano/administração & dosagem , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ovariectomia , Ligante RANK/farmacologia , Ligante RANK/fisiologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/biossíntese , Microtomografia por Raio-X/métodos
8.
Front Microbiol ; 13: 701489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633715

RESUMO

Ustilaginoidea virens infects rice, causing rice false smut disease and reduced yields. During its growth, U. virens can also produce some toxins but less is known about the response mechanisms of the plant to U. virens toxins. U. virens toxins can inhibit the accumulation of total sugar in rice panicles. We used RNA sequencing to analyze the differential expression profile induced by infiltrating crude toxins into early growth-stage rice panicles. We compared the transcriptomes of the control and crude toxin-treated rice panicles and determined variable transcriptional responses under the action of the crude toxins. A total of 6,127 differentially expressed genes (DEGs) were identified. Among these genes, 3,150 were upregulated and 2,977 were downregulated. Gene Ontology (GO) and metabolic pathway enrichment analyses indicated that U. virens toxins mainly influenced glycometabolism, amino acid metabolism, and secondary metabolism of rice panicles. DEG analysis showed that the gene expression levels of 10 transcription factor families were significantly changed. Genes involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, sugar transporters, and starch synthesis-related were significantly downregulated, including cytochrome P450, beta-glucosidase, CHS1, sucrose transporters, SWEETs, starch-branching enzymes, and UDP-glucose pyrophosphorylase. However, genes involved in programmed cell death (PCD) were significantly upregulated and contained cytochrome c, metacaspase, and protein kinase genes. The results indicate that U. virens toxins may act as the pathogenic factors to reduce stress resistance, disrupt total sugar accumulation and starch formation, and induce PCD.

9.
J Fungi (Basel) ; 8(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422026

RESUMO

Rice false smut caused by Ustilaginoidea virens is a destructive disease in rice cropping areas of the world. The present study is focused on the morphology, pathogenicity, mating-type loci distribution, and genetic characterization of different isolates of U. virens. A total of 221 strains of U. virens were collected from 13 rice-growing regions in southwest China. The morphological features of these strains exhibited high diversity, and the pathogenicity of the smut fungus showed significant differentiation. There was no correlation between pathogenicity and sporulation. Mating-type locus (MAT) analysis revealed that all 221 isolates comprised heterothallic and homothallic forms, wherein 204 (92.31%) and 17 (7.69%) isolates belonged to heterothallic and homothallic mating types, respectively. Among 204 strains of heterothallic mating types, 62 (28.05%) contained MAT1-1-1 idiomorphs, and 142 isolates (64.25%) had the MAT1-2-1 idiomorph. Interestingly, strains isolated from the same fungus ball had different mating types. The genetic structure of the isolates was analyzed using simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNPs). All isolates were clustered into five genetic groups. The values of Nei's gene diversity (H) and Shannon's information index (I) indicated that all strains as a group had higher genetic diversity than strains from a single geographical population. The pairwise population fixation index (FST) values also indicated significant genetic differentiation among all compared geographical populations. The analysis of molecular variation (AMOVA) indicated greater genetic variation within individual populations and less genetic variation among populations. The results showed that most of the strains were not clustered according to their geographical origin, showing the rich genetic diversity and the complex and diverse genetic background of U. virens in southwest China. These results should help to better understand the biological and genetic diversity of U. virens in southwest China and provide a theoretical basis for building effective management strategies.

10.
Comput Struct Biotechnol J ; 19: 2607-2617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025947

RESUMO

Paecilomyces penicillatus is one of the pathogens of morels, which greatly affects the yield and quality of Morchella spp.. In the present study, we de novo assembled the genome sequence of the fungus P. penicillatus SAAS_ppe1. We analyzed the transcriptional profile of P. penicillatus SAAS_ppe1 infection of Morchella importuna at different stages (3 days and 6 days after infection) and the response of M. importuna using the transcriptome. The assembled genome sequence of P. penicillatus SAAS_ppe1 was 39.78 Mb in length (11 scaffolds; scaffold N50, 6.50 Mb), in which 99.7% of the expected genes were detected. A total of 7.48% and 19.83% clean transcriptional reads from the infected sites were mapped to the P. penicillatus genome at the early and late stages of infection, respectively. There were 3,943 genes differently expressed in P. penicillatus at different stages of infection, of which 24 genes had increased expression with the infection and infection stage, including diphthamide biosynthesis, aldehyde reductase, and NAD (P)H-hydrate epimerase (P < 0.05). Several genes had variable expression trends at different stages of infection, indicating P. penicillatus had diverse regulation patterns to infect M. importuna. GO function, involving cellular components, and KEGG pathways, involving glycerolipid metabolism, and plant-pathogen interaction were significantly enriched during infection by P. penicillatus. The expression of ten genes in M. importuna increased during the infection and infection stage, and these may regulate the response of M. importuna to P. penicillatus infection. This is the first comprehensive study on P. penicillatus infection mechanism and M. importuna response mechanism, which will lay a foundation for understanding the fungus-fungus interactions, gene functions, and variety breeding of pathogenic and edible fungi.

11.
Sci Rep ; 11(1): 2569, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510299

RESUMO

Trametes species are efficient wood decomposers that are widespread throughout the world. Mitogenomes have been widely used to understand the phylogeny and evolution of fungi. Up to now, two mitogenomes from the Trametes genus have been revealed. In the present study, the complete mitogenomes of two novel Trametes species, Trametes versicolor and T. coccinea, were assembled and compared with other Polyporales mitogenomes. Both species contained circular DNA molecules, with sizes of 67,318 bp and 99,976 bp, respectively. Comparative mitogenomic analysis indicated that the gene number, length and base composition varied between the four Trametes mitogenomes we tested. In addition, all of the core protein coding genes in Trametes species were identified and subjected to purifying selection. The mitogenome of T. coccinea contained the largest number of introns among the four Trametes species tested, and introns were considered the main factors contributing to size variations of Polyporales. Several novel introns were detected in the Trametes species we assembled, and introns identified in Polyporales were found to undergo frequent loss/gain events. Large-scale gene rearrangements were detected between closely related Trametes species, including gene inversions, insertions, and migrations. A well-supported phylogenetic tree for 77 Basidiomycetes was obtained based on the combined mitochondrial gene set using 2 phylogenetic inference methods. The results showed that mitochondrial genes are effective molecular markers for understanding the phylogeny of Basidiomycetes. This study is the first to report the mitogenome rearrangement and intron dynamics of Trametes species, which shed light on the evolution of Trametes and other related species.


Assuntos
Basidiomycota/genética , Genoma Mitocondrial/genética , Íntrons/genética , Trametes/genética , Migração Animal/fisiologia , Filogenia
12.
J Orthop Surg Res ; 16(1): 147, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33610183

RESUMO

BACKGROUND: Silymarin (SMN), a polyphenolic flavonoid, is involved in multiple bioactive functions including anti-inflammation. Pretreatment with SMN demonstrated chondroprotection against tumour necrosis factor-alpha (TNF-α) stimulation in a chondrocyte cell line. However, pre- and posttreatment with phytochemicals have varying effects on osteoarthritis (OA) chondrocytes, and the therapeutic potential of SMN after catabolic cytokine stimulation is not fully elucidated. METHODS: The cytotoxicity of SMN (12.5, 25, 50 and 100 µM) was evaluated in human primary chondrocytes. The chondrocytes were supplemented with SMN (25 and 50 µM) after interleukin-1beta (IL-1ß) stimulation. The mRNA expression and protein production of catabolic/anabolic cytokines as well as extracellular matrix (ECM) components were evaluated. RESULTS: High-dose SMN (100 µM) impaired the mitochondrial activity in chondrocytes, and 50 µM SMN further caused cell death in IL-1ß-stimulated cells. The addition of 25 µM SMN ameliorated cell senescence; downregulated the catabolic genes of inducible nitric oxide synthase, IL-1ß, TNF-α, matrix metalloproteinase-3 (MMP-3), MMP-9 and MMP-13; upregulated the anabolic genes of tissue inhibitor of metalloproteinase-1 (TIMP-1) and collagen type II alpha 1; and restored the expression of chondrogenic phenotype genes SOX9 and sirtuin-1 (Sirt1). In addition, the production of IL-1ß, MMP-3 and MMP-9 decreased with an increase in TIMP-1 secretion. However, the mRNA levels of IL-6, IL-8 and IL-10 and protein production remained high. The addition of nicotinamide, a Sirt1 inhibitor, downregulated SOX9 and attenuated the therapeutic effects of SMN on IL-1ß-stimulated chondrocytes. CONCLUSION: SMN regulates the chondrocyte phenotype through Sirt1 and SOX9 to improve ECM homeostasis and may serve as a complementary therapy for early-stage knee OA.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Citocinas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Silimarina/farmacologia , Sirtuína 1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/tratamento farmacológico , Regulação para Cima
13.
Front Microbiol ; 11: 573064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193177

RESUMO

Phallus indusiatus and Phallus echinovolvatus are edible bamboo mushrooms with pharmacological properties. We sequenced, assembled, annotated, and compared the mitogenomes of these species. Both mitogenomes were composed of circular DNA molecules, with sizes of 89,139 and 50,098 bp, respectively. Introns were the most important factor in mitogenome size variation within the genus Phallus. Phallus indusiatus, P. echinovolvatus, and Turbinellus floccosus in the subclass Phallomycetidae have conservative gene arrangements. Large-scale gene rearrangements were observed in species representing 42 different genera of Basidiomycetes. A variety of intron position classes were found in the 44 Basidiomycete species analyzed. A novel group II intron from the P. indusiatus mitogenome was compared with other fungus species containing the same intron, and we demonstrated that the insertion sites of the intron had a base preference. Phylogenetic analyses based on combined gene datasets yielded well-supported Bayesian posterior probability (BPP = 1) topologies. This indicated that mitochondrial genes are reliable molecular markers for analyzing the phylogenetic relationships of the Basidiomycetes. This is the first study of the mitogenome of the genus Phallus, and it increases our understanding of the population genetics and evolution of bamboo mushrooms and related species.

14.
Mitochondrial DNA B Resour ; 5(3): 2595-2596, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-33457872

RESUMO

Cladobotryum mycophilum is the causal agent of cobweb disease in many important mushroom crops. In this study, we report the complete mitochondrial genome of C. mycophilum for the first time. The genome is 78,729 bp long and comprises 52 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNA), and 26 transfer RNA (tRNA) genes. The nucleotide composition of C. mycophilum mitochondrial genome is as follows: A (38.06%), T (34.68%), C (12.19%), and G (15.07%). Phylogenetic analysis revealed that C. mycophilum had a close relationship with Cladobotryum varium from Hypocreaceae. This study provided a basis for studies of the mitochondrial evolution of Hypocreaceae.

15.
Regen Ther ; 14: 238-244, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32435677

RESUMO

INTRODUCTION: Adipose-derived stem cells (ASCs) are potential cell sources for cartilage tissue engineering. Chitosan has been shown to enhance the stemness and differentiation capability of ASCs, and the native extracellular matrix (ECM) derived from articular cartilage has been also reported to induce chondrogenic differentiation of ASCs. Here we tested the hypothesis that a porous three-dimensional (3D) hybrid scaffold composed of chitosan and cartilage ECM can provide a better environment to induce ASC chondrogenesis. METHODS: Mixed solution composed of chitosan and cartilage ECM was frozen and lyophilized to form a composite construct. The porous 3D scaffolds were further crosslinked by genipin and used for ASC culture. RESULTS: Cultivation of ASCs in the chitosan/cartilage ECM composite 3D scaffolds induced the formation of cell spheroids with profound glycosaminoglycan production after 14 and 28 days culture. Chondrogenesis of ASCs seeded in the 3D scaffolds was also evident by mRNA expressions of cartilage-specific gene COL2A1 and ACAN on day 14. Histology and immunohistochemistry on day 28 also showed abundant cartilage-specific macromolecules, namely collagen type II and proteoglycan, deposited in a surface layer of the composite scaffold with tangential layer, transitional layer, and lacunae-like structures. Otherwise, hypertrophic markers collagen type I and X were concentrated in the area beneath the surface. CONCLUSION: Our findings demonstrated spatial chondrogenic differentiation of ASCs in the chitosan-cartilage ECM composite scaffolds. This 3D hybrid scaffold exhibits great potentials for ASC-based cartilage tissue engineering.

16.
Regen Ther ; 14: 177-183, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32128354

RESUMO

INTRODUCTION: Targeting inflammatory cascades is considered a promising way to prevent knee osteoarthritis (OA) progression. In terms of down-regulating the expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-6, and matrix metalloproteinases (MMPs), pre-treatment with the flavonoid baicalein reportedly protects articular chondrocytes against the cytotoxicity of IL-1ß. However, the benefits of post-treatment baicalein on osteoarthritic chondrocytes are not fully elucidated. METHODS: In this study, primary human chondrocytes were stimulated with IL-1ß prior to baicalein application to evaluate the therapeutic effect of post-treatment. RESULTS: Post-treatment baicalein alleviated cell death and partially restored mitochondrial viability, while the senescence-associated secretory phenotype was not improved in IL-1ß-stimulated chondrocytes. Post-treatment baicalein down-regulated the expressions of IL-1ß, tumor necrosis factor-alpha, MMP-3, MMP-9, and MMP-13 mRNA as well as the protein production in stimulated cells. Even so, the levels of these factors were relative higher than those in un-treated chondrocytes. Moreover, iNOS, IL-6, IL-8, and COL1A1 expressions were consistently high, and IL-10 protein synthesis steadily increased in IL-1ß-treated chondrocytes under baicalein treated status. Moreover, Western blot analyses showed that post-treatment baicalein suppressed nuclear factor kappa-light-chain-enhancer of activated B cells and p50 production while downstream cyclooxygenase-2 was still highly expressed. CONCLUSION: Baicalein post-treatment to osteoarthritic chondrocytes had a minor benefit to the homeostasis of cartilaginous extracellular matrix.

17.
Mitochondrial DNA B Resour ; 4(2): 2938-2939, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33365801

RESUMO

Corynespora cassiicola is a well-known plant pathogen with a broad host range and diverse lifestyles. In this study, we presented the complete mitochondrial genome (mitogenome) of C. cassiicola for the first time. It has a total length of 40,752 bp, which encodes 17 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNA), and 27 transfer RNA (tRNA) genes. The nucleotide composition of the mitogenome is: A (36.24%), T (34.62%), G (15.74%), and C (13.39%). Phylogenetic analysis revealed that C. cassiicola has a close relationship with Didymella pinodes from Didymellaceae.

18.
Sci Rep ; 9(1): 17447, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31768013

RESUMO

Scytalidium auriculariicola is the causative pathogen of slippery scar disease in the cultivated cloud ear fungus, Auricularia polytricha. In the present study, the mitogenome of S. auriculariicola was sequenced and assembled by next-generation sequencing technology. The circular mitogenome is 96,857 bp long and contains 56 protein-coding genes, 2 ribosomal RNA genes, and 30 transfer RNA genes (tRNAs). The high frequency of A and T used in codons contributed to the high AT content (73.70%) of the S. auriculariicola mitogenome. Comparative analysis indicated that the base composition and the number of introns and protein-coding genes in the S. auriculariicola mitogenome varied from that of other Leotiomycetes mitogenomes, including a uniquely positive AT skew. Five distinct groups were found in the gene arrangements of Leotiomycetes. Phylogenetic analyses based on combined gene datasets (15 protein-coding genes) yielded well-supported (BPP = 1) topologies. A single-gene phylogenetic tree indicated that the nad4 gene may be useful as a molecular marker to analyze the phylogenetic relationships of Leotiomycetes species. This study is the first report on the mitochondrial genome of the genus Scytalidium, and it will contribute to our understanding of the population genetics and evolution of S. auriculariicola and related species.


Assuntos
DNA Fúngico/genética , DNA Mitocondrial/genética , Genoma Fúngico , Saccharomycetales/genética , Composição de Bases , Evolução Biológica , DNA Ribossômico/genética , Conjuntos de Dados como Assunto , Proteínas Fúngicas/genética , Genes Fúngicos , Sequenciamento de Nucleotídeos em Larga Escala , Conformação de Ácido Nucleico , Filogenia , RNA Fúngico/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Sequências Repetitivas de Ácido Nucleico , Saccharomycetales/classificação , Especificidade da Espécie
19.
Mol Autism ; 9: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456827

RESUMO

Background: Impaired social interaction is one of the essential features of autism spectrum disorder (ASD). Our previous copy number variation (CNV) study discovered a novel deleted region associated with ASD. One of the genes included in the deleted region is ARHGEF10. A missense mutation of ARHGEF10 has been reported to be one of the contributing factors in several diseases of the central nervous system. However, the relationship between the loss of ARHGEF10 and the clinical symptoms of ASD is unclear. Methods: We generated Arhgef10 knockout mice as a model of ASD and characterized the social behavior and the biochemical changes in the brains of the knockout mice. Results: Compared with their wild-type littermates, the Arhgef10-depleted mice showed social interaction impairment, hyperactivity, and decreased depression-like and anxiety-like behavior. Behavioral measures of learning in the Morris water maze were not affected by Arhgef10 deficiency. Moreover, neurotransmitters including serotonin, norepinephrine, and dopamine were significantly increased in different brain regions of the Arhgef10 knockout mice. In addition, monoamine oxidase A (MAO-A) decreased in several brain regions. Conclusions: These results suggest that ARHGEF10 is a candidate risk gene for ASD and that the Arhgef10 knockout model could be a tool for studying the mechanisms of neurotransmission in ASD. Trial registration: Animal studies were approved by the Institutional Animal Care and Use Committee of National Taiwan University (IACUC 20150023). Registered 1 August 2015.


Assuntos
Transtorno do Espectro Autista/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Comportamento Social , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/deficiência , Serotonina/metabolismo
20.
Mitochondrial DNA B Resour ; 2(2): 528-529, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33473886

RESUMO

In this study, we presented the complete mitochondrial genome of Fusarium sp. It has a total length of 47, 74 bp, and the base composition of the mitogenome is as follows: A (34.1%), T (33.5%), C (14.7%), and G (17.7%). The mitogenome contains 23 protein-coding genes, 1 ribosomal RNA (rRNA), and 26 transfer RNA (tRNA) genes, all coded on the same strand of DNA. The gene order is identical to that of the other Fusarium mitogenomes. The taxonomic status of the Fusarium sp. mitogenome exhibits a closest relationship with F. oxysporum, but varied in the structure of mitochondrial genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA