Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 75(12): 2273-2289, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29285573

RESUMO

Effector proteins are key virulence factors of pathogenic bacteria that target and subvert the functions of essential host defense mechanisms. Typically, these proteins are delivered into infected host cells via the type III secretion system (T3SS). Recently, however, several effector proteins have been found to enter host cells in a T3SS-independent manner thereby widening the potential range of these virulence factors. Prototypes of such bacteria-derived cell-penetrating effectors (CPEs) are the Yersinia enterocolitica-derived YopM as well as the Salmonella typhimurium effector SspH1. Here, we investigated specifically the group of bacterial LPX effector proteins comprising the Shigella IpaH proteins, which constitute a subtype of the leucine-rich repeat protein family and share significant homologies in sequence and structure. With particular emphasis on the Shigella-effector IpaH9.8, uptake into eukaryotic cell lines was shown. Recombinant IpaH9.8 (rIpaH9.8) is internalized via endocytic mechanisms and follows the endo-lysosomal pathway before escaping into the cytosol. The N-terminal alpha-helical domain of IpaH9.8 was identified as the protein transduction domain required for its CPE ability as well as for being able to deliver other proteinaceous cargo. rIpaH9.8 is functional as an ubiquitin E3 ligase and targets NEMO for poly-ubiquitination upon cell penetration. Strikingly, we could also detect other recombinant LPX effector proteins from Shigella and Salmonella intracellularly when applied to eukaryotic cells. In this study, we provide further evidence for the general concept of T3SS-independent translocation by identifying novel cell-penetrating features of these LPX effectors revealing an abundant species-spanning family of CPE.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada/genética , Família Multigênica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Fatores de Virulência/química , Animais , Proteínas de Bactérias/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Domínios e Motivos de Interação entre Proteínas/genética , Células RAW 264.7 , Especificidade da Espécie , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Yersinia enterocolitica/química , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
2.
Int J Med Microbiol ; 308(7): 872-881, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29936031

RESUMO

Microbial pathogens have developed intriguing molecular strategies to modulate and/or control host cell functions to ensure their own survival and replication. During this molecular interplay between microbes and their respective hosts especially secreted virulence factors play a major role. These factors not only include a plethora of cytotoxins but also sophisticated effector proteins targeting intracellular decision points leading to inhibition of defense responses - and/or even to cell death. To be effective, most of these secreted factors have to get across the cytoplasmic membrane and reach their targets in the cytoplasm. Apparently, pathogens use multiple mechanisms to deliver virulence factors to their cytoplasmic destination. Here, we exemplarily discuss the recently emerging scenario of parallel strategies for the intracellular deployment of toxins and effector proteins of Gram-negative pathogens with a special focus on pathogenic Escherichia coli. These pathogens employ various nanomachines such as the type III secretion system (T3SS), cell-penetrating effector proteins (CPE), and the wrapping of virulence factors in outer membrane vesicles (OMV) for protection and parallel delivery. As intracellular delivery remains a major problem in drug development, potential therapeutic applications based on these bacterial strategies will be briefly discussed.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/transmissão , Interações Hospedeiro-Patógeno/fisiologia , Sistemas de Secreção Tipo III/fisiologia , Sistemas de Secreção Tipo IV/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Infecções por Escherichia coli/microbiologia , Humanos , Transporte Proteico/fisiologia , Fatores de Virulência/metabolismo
3.
Int J Med Microbiol ; 304(3-4): 444-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24636859

RESUMO

The Yersinia outer protein M (YopM) is a type 3 secretion system (T3SS)-dependent effector protein of Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis. Although YopM is indispensable for full virulence, its molecular functions still remain largely elusive. Recently, we could identify the recombinant YopM (rYopM) protein derived from the Y. enterocolitica strain 8081 (JB580) as a cell-penetrating protein, which down-regulates the expression of various pro-inflammatory cytokines including TNFα. In this study, we have generated rabbit monoclonal anti-YopM antibodies (RabMabs). RabMabs were characterized by SDS-PAGE and Western blotting using various truncated versions of rYopM to identify epitope-containing domains. RabMabs recognizing either the N- or C-terminus of YopM were characterized further and validated using a collection of 61 pathogenic and non-pathogenic Yersinia strains as well as exemplary strains of major intestinal bacterial pathogens such as Salmonella enterica ssp. enterica, Shigella flexneri and intestinal pathogenic Escherichia coli. RabMab 41.3 directed at the N-terminus of YopM of Y. enterocolitica strain 8081 recognized all YopM-expressing pathogenic Yersinia strains analyzed in this study but failed to recognize non-pathogenic isolates. Thus, RabMab 41.3 might be applicable for the detection of pathogenic Yersinia strains.


Assuntos
Anticorpos Monoclonais , Proteínas da Membrana Bacteriana Externa/imunologia , Yersinia enterocolitica/isolamento & purificação , Yersinia pestis/isolamento & purificação , Yersinia pseudotuberculosis/isolamento & purificação , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Feminino , Coelhos , Sensibilidade e Especificidade , Yersinia enterocolitica/imunologia , Yersinia pestis/imunologia , Yersinia pseudotuberculosis/imunologia
4.
Cell Mol Life Sci ; 70(24): 4809-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23835836

RESUMO

Extracellular Gram-negative pathogenic bacteria target essential cytoplasmic processes of eukaryotic cells by using effector protein delivery systems such as the type III secretion system (T3SS). These secretion systems directly inject effector proteins into the host cell cytoplasm. Among the T3SS-dependent Yop proteins of pathogenic Yersinia, the function of the effector protein YopM remains enigmatic. In a recent study, we demonstrated that recombinant YopM from Yersinia enterocolitica enters host cells autonomously without the presence of bacteria and thus identified YopM as a novel bacterial cell-penetrating protein. Following entry YopM down-regulates expression of pro-inflammatory cytokines such as tumor necrosis factor α. These properties earmark YopM for further development as a novel anti-inflammatory therapeutic. To elucidate the uptake and intracellular targeting mechanisms of this bacterial cell-penetrating protein, we analyzed possible routes of internalization employing ultra-cryo electron microscopy. Our results reveal that under physiological conditions, YopM enters cells predominantly by exploiting endocytic pathways. Interestingly, YopM was detected free in the cytosol and inside the nucleus. We could not observe any colocalization of YopM with secretory membranes, which excludes retrograde transport as the mechanism for cytosolic release. However, our findings indicate that direct membrane penetration and/or an endosomal escape of YopM contribute to the cytosolic and nuclear localization of the protein. Surprisingly, even when endocytosis is blocked, YopM was found to be associated with endosomes. This suggests an intracellular endosome-associated transport of YopM.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Transporte Biológico Ativo , Compartimento Celular , Peptídeos Penetradores de Células/imunologia , Peptídeos Penetradores de Células/metabolismo , Endocitose , Endossomos/metabolismo , Endossomos/ultraestrutura , Células HeLa , Humanos , Imunossupressores/imunologia , Imunossupressores/metabolismo , Microscopia Imunoeletrônica , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Yersinia enterocolitica/imunologia , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/patogenicidade
5.
Cell Host Microbe ; 13(1): 87-99, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23332158

RESUMO

Modulation of NF-κB-dependent responses is critical to the success of attaching/effacing (A/E) human pathogenic E. coli (EPEC and EHEC) and the natural mouse pathogen Citrobacter rodentium. NleB, a highly conserved type III secretion system effector of A/E pathogens, suppresses NF-κB activation, but the underlying mechanisms are unknown. We identified the mammalian glycolysis enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an NleB-interacting protein. Further, we discovered that GAPDH interacts with the TNF receptor-associated factor 2 (TRAF2), a protein required for TNF-α-mediated NF-κB activation, and regulates TRAF2 polyubiquitination. During infection, NleB functions as a translocated N-acetyl-D-glucosamine (O-GlcNAc) transferase that modifies GAPDH. NleB-mediated GAPDH O-GlcNAcylation disrupts the TRAF2-GAPDH interaction to suppress TRAF2 polyubiquitination and NF-κB activation. Eliminating NleB O-GlcNAcylation activity attenuates C. rodentium colonization of mice. These data identify GAPDH as a TRAF2 signaling cofactor and reveal a virulence strategy employed by A/E pathogens to inhibit NF-κB-dependent host innate immune responses.


Assuntos
Citrobacter rodentium/enzimologia , Regulação para Baixo , Infecções por Enterobacteriaceae/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/imunologia , Glicosiltransferases/imunologia , NF-kappa B/imunologia , Animais , Citrobacter rodentium/genética , Citrobacter rodentium/imunologia , Citrobacter rodentium/patogenicidade , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , NF-kappa B/genética , Ligação Proteica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA