Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876743

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin ß-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.


Assuntos
Integrinas/metabolismo , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Antineoplásicos/toxicidade , Células Cultivadas , Drosophila melanogaster , Endossomos/metabolismo , Feminino , Gânglios Espinais/citologia , Integrinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/fisiologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/etiologia
2.
PLoS Genet ; 14(10): e1007676, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30365533

RESUMO

Morphogen gradients provide concentration-dependent positional information along polarity axes. Although the dynamics of the establishment of these gradients is well described, precision and noise in the downstream activation processes remain elusive. A simple paradigm to address these questions is the Bicoid morphogen gradient that elicits a rapid step-like transcriptional response in young fruit fly embryos. Focusing on the expression of the major Bicoid target, hunchback (hb), at the onset of zygotic transcription, we used the MS2-MCP approach which combines fluorescent labeling of nascent mRNA with live imaging at high spatial and temporal resolution. Removing 36 putative Zelda binding sites unexpectedly present in the original MS2 reporter, we show that the 750 bp of the hb promoter are sufficient to recapitulate endogenous expression at the onset of zygotic transcription. After each mitosis, in the anterior, expression is turned on to rapidly reach a plateau with all nuclei expressing the reporter. Consistent with a Bicoid dose-dependent activation process, the time period required to reach the plateau increases with the distance to the anterior pole. Despite the challenge imposed by frequent mitoses and high nuclei-to-nuclei variability in transcription kinetics, it only takes 3 minutes at each interphase for the MS2 reporter loci to distinguish subtle differences in Bicoid concentration and establish a steadily positioned and steep (Hill coefficient ~ 7) expression boundary. Modeling based on the cooperativity between the 6 known Bicoid binding sites in the hb promoter region, assuming rate limiting concentrations of the Bicoid transcription factor at the boundary, is able to capture the observed dynamics of pattern establishment but not the steepness of the boundary. This suggests that a simple model based only on the cooperative binding of Bicoid is not sufficient to describe the spatiotemporal dynamics of early hb expression.


Assuntos
Drosophila melanogaster/embriologia , Proteínas de Homeodomínio/fisiologia , Morfogênese/fisiologia , Transativadores/fisiologia , Animais , Sítios de Ligação/genética , Padronização Corporal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Imagem Óptica/métodos , Regiões Promotoras Genéticas/genética , Transativadores/genética , Fatores de Transcrição/genética , Zigoto/metabolismo
3.
PLoS Comput Biol ; 12(12): e1005256, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27942043

RESUMO

The simultaneous expression of the hunchback gene in the numerous nuclei of the developing fly embryo gives us a unique opportunity to study how transcription is regulated in living organisms. A recently developed MS2-MCP technique for imaging nascent messenger RNA in living Drosophila embryos allows us to quantify the dynamics of the developmental transcription process. The initial measurement of the morphogens by the hunchback promoter takes place during very short cell cycles, not only giving each nucleus little time for a precise readout, but also resulting in short time traces of transcription. Additionally, the relationship between the measured signal and the promoter state depends on the molecular design of the reporting probe. We develop an analysis approach based on tailor made autocorrelation functions that overcomes the short trace problems and quantifies the dynamics of transcription initiation. Based on live imaging data, we identify signatures of bursty transcription initiation from the hunchback promoter. We show that the precision of the expression of the hunchback gene to measure its position along the anterior-posterior axis is low both at the boundary and in the anterior even at cycle 13, suggesting additional post-transcriptional averaging mechanisms to provide the precision observed in fixed embryos.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Modelos Genéticos , Fatores de Transcrição/genética , Transcrição Gênica/genética , Animais , Ciclo Celular/genética , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo
4.
Dev Cell ; 56(18): 2649-2663.e6, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34529940

RESUMO

The nuclear lamina is typically associated with transcriptional silencing, and peripheral relocation of genes highly correlates with repression. However, the DNA sequences and proteins regulating gene-lamina interactions are largely unknown. Exploiting the developmentally timed hunchback gene movement to the lamina in Drosophila neuroblasts, we identified a 250 bp intronic element (IE) both necessary and sufficient for relocation. The IE can target a reporter transgene to the lamina and silence it. Endogenously, however, hunchback is already repressed prior to relocation. Instead, IE-mediated relocation confers a heritably silenced gene state refractory to activation in descendent neurons, which terminates neuroblast competence to specify early-born identity. Surprisingly, we found that the Polycomb group chromatin factors bind the IE and are required for lamina relocation, revealing a nuclear architectural role distinct from their well-known function in transcriptional repression. Together, our results uncover in vivo mechanisms underlying neuroblast competence and lamina association in heritable gene silencing.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo
5.
Curr Opin Neurobiol ; 59: 146-156, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299459

RESUMO

One of the hallmarks of the metazoan genome is that genes are non-randomly positioned within the cell nucleus; in fact, the entire genome is packaged in a highly organized manner to orchestrate proper gene expression for each cell type. This is an especially daunting task for the development of the brain, which consists of an incredibly diverse population of neural cells. How genome architecture is established, maintained, and regulated to promote diverse cell fates and functions are fascinating questions with important implications in development and disease. The explosion in various biochemical and imaging techniques to analyze chromatin is now making it possible to interrogate the genome at an unprecedented resolution. Here we will focus on current advances in understanding genome architecture and gene regulation in the context of neural development.


Assuntos
Cromatina , Genoma , Animais , Núcleo Celular , Regulação da Expressão Gênica , Insetos , Mamíferos
6.
Wiley Interdiscip Rev Dev Biol ; 5(3): 296-310, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26894441

RESUMO

The regulation of transcription is a fundamental process underlying the determination of cell identity and its maintenance during development. In the last decades, most of the transcription factors, which have to be expressed at the right place and at the right time for the proper development of the fly embryo, have been identified. However, mostly because of the lack of methods to visualize transcription as the embryo develops, their coordinated spatiotemporal dynamics remains largely unexplored. Efforts have been made to decipher the transcription process with single molecule resolution at the single cell level. Recently, the fluorescent labeling of nascent RNA in developing fly embryos allowed the direct visualization of ongoing transcription at single loci within each nucleus. Together with powerful imaging and quantitative data analysis, these new methods provide unprecedented insights into the temporal dynamics of the transcription process and its intrinsic noise. Focusing on the Drosophila embryo, we discuss how the detection of single RNA molecules enhanced our comprehension of the transcription process and we outline the potential next steps made possible by these new imaging tools. In combination with genetics and theoretical analysis, these new imaging methods will aid the search for the mechanisms responsible for the robustness of development. For further resources related to this article, please visit the WIREs website.


Assuntos
Drosophila/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Ativação Transcricional , Animais , Drosophila/embriologia , Drosophila/metabolismo , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/métodos , Sensibilidade e Especificidade
7.
Curr Biol ; 26(2): 212-218, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26748851

RESUMO

Transmission of active transcriptional states from mother to daughter cells has the potential to foster precision in the gene expression programs underlying development. Such transcriptional memory has been specifically proposed to promote rapid reactivation of complex gene expression profiles after successive mitoses in Drosophila development [1]. By monitoring transcription in living Drosophila embryos, we provide the first evidence for transcriptional memory in animal development. We specifically monitored the activities of stochastically expressed transgenes in order to distinguish active and inactive mother cells and the behaviors of their daughter nuclei after mitosis. Quantitative analyses reveal that there is a 4-fold higher probability for rapid reactivation after mitosis when the mother experienced transcription. Moreover, memory nuclei activate transcription twice as fast as neighboring inactive mothers, thus leading to augmented levels of gene expression. We propose that transcriptional memory is a mechanism of precision, which helps coordinate gene activity during embryogenesis.


Assuntos
Padronização Corporal/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Transcrição Gênica/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitose/fisiologia , Fatores de Transcrição/metabolismo , Transgenes/genética
8.
Curr Biol ; 23(21): 2135-9, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24139736

RESUMO

The early Drosophila embryo is an ideal model to understand the transcriptional regulation of well-defined patterns of gene expression in a developing organism. In this system, snapshots of transcription measurements obtained by RNA FISH on fixed samples cannot provide the temporal resolution needed to distinguish spatial heterogeneity from inherent noise. Here, we used the MS2-MCP system to visualize in living embryos nascent transcripts expressed from the canonical hunchback (hb) promoter under the control of Bicoid (Bcd). The hb-MS2 reporter is expressed as synchronously as endogenous hb in the anterior half of the embryo, but unlike hb it is also active in the posterior, though more heterogeneously and more transiently than in the anterior. The length and intensity of active transcription periods in the anterior are strongly reduced in absence of Bcd, whereas posterior ones are mostly Bcd independent. This posterior noisy signal decreases progressively through nuclear divisions, so that the MS2 reporter expression mimics the known anterior hb pattern at cellularization. We propose that the establishment of the hb pattern relies on Bcd-dependent lengthening of transcriptional activity periods in the anterior and may require two distinct repression mechanisms in the posterior.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Transativadores/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Microscopia Confocal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Gravação de Videoteipe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA