Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biochemistry ; 62(1): 95-108, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36525636

RESUMO

Eukaryotic RNA polymerase II (Pol II) is an essential enzyme that lies at the core of eukaryotic biology. Due to its pivotal role in gene expression, Pol II has been subjected to a substantial number of investigations. We aim to further our understanding of Pol II nucleotide incorporation by utilizing transient-state kinetic techniques to examine Pol II single nucleotide addition on the millisecond time scale. We analyzed Saccharomyces cerevisiae Pol II incorporation of ATP or an ATP analog, Sp-ATP-α-S. Here we have measured the rate constants governing individual steps of the Pol II transcription cycle in the presence of ATP or Sp-ATP-α-S. These results suggest that Pol II catalyzes nucleotide incorporation by binding the next cognate nucleotide and immediately catalyzes bond formation and bond formation is either followed by a conformational change or pyrophosphate release. By comparing our previously published RNA polymerase I (Pol I) and Pol I lacking the A12 subunit (Pol I ΔA12) results that we collected under the same conditions with the identical technique, we show that Pol II and Pol I ΔA12 exhibit similar nucleotide addition mechanisms. This observation indicates that removal of the A12 subunit from Pol I results in a Pol II like enzyme. Taken together, these data further our collective understanding of Pol II's nucleotide incorporation mechanism and the evolutionary divergence of RNA polymerases across the three domains of life.


Assuntos
Nucleotídeos , RNA Polimerase II , Nucleotídeos/metabolismo , RNA Polimerase II/metabolismo , Cinética , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo
2.
J Biol Chem ; 296: 100051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33168625

RESUMO

Eukaryotes express at least three nuclear DNA-dependent RNA polymerases (Pols) responsible for synthesizing all RNA required by the cell. Despite sharing structural homology, they have functionally diverged to suit their distinct cellular roles. Although the Pols have been studied extensively, direct comparison of their enzymatic properties is difficult because studies are often conducted under disparate experimental conditions and techniques. Here, we directly compare and reveal functional differences between Saccharomyces cerevisiae Pols I and II using a series of quantitative in vitro transcription assays. We find that Pol I single-nucleotide and multinucleotide addition rate constants are faster than those of Pol II. Pol I elongation complexes are less stable than Pol II elongation complexes, and Pol I is more error prone than Pol II. Collectively, these data show that the enzymatic properties of the Pols have diverged over the course of evolution, optimizing these enzymes for their unique cellular responsibilities.


Assuntos
RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Cinética , Polimorfismo de Nucleotídeo Único , Transcrição Gênica
3.
Biochem Soc Trans ; 50(2): 895-906, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35356966

RESUMO

Numerous ATPases associated with diverse cellular activities (AAA+) proteins form hexameric, ring-shaped complexes that function via ATPase-coupled translocation of substrates across the central channel. Cryo-electron microscopy of AAA+ proteins processing substrate has revealed non-symmetric, staircase-like hexameric structures that indicate a sequential clockwise/2-residue step translocation model for these motors. However, for many of the AAA+ proteins that share similar structural features, their translocation properties have not yet been experimentally determined. In the cases where translocation mechanisms have been determined, a two-residue translocation step-size has not been resolved. In this review, we explore Hsp104, ClpB, ClpA and ClpX as examples to review the experimental methods that have been used to examine, in solution, the translocation mechanisms employed by AAA+ motor proteins. We then ask whether AAA+ motors sharing similar structural features can have different translocation mechanisms. Finally, we discuss whether a single AAA+ motor can adopt multiple translocation mechanisms that are responsive to different challenges imposed by the substrate or the environment. We suggest that AAA+ motors adopt more than one translocation mechanism and are tuned to switch to the most energetically efficient mechanism when constraints are applied.


Assuntos
Proteínas AAA , Proteínas de Escherichia coli , Proteínas AAA/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares
4.
Biophys J ; 120(20): 4378-4390, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34509510

RESUMO

RNA polymerases execute the first step in gene expression: transcription of DNA into RNA. Eukaryotes, unlike prokaryotes, express at least three specialized nuclear multisubunit RNA polymerases (Pol I, Pol II, and Pol III). RNA polymerase I (Pol I) synthesizes the most abundant RNA, ribosomal RNA. Nearly 60% of total transcription is devoted to ribosomal RNA synthesis, making it one of the cell's most energy consuming tasks. While a kinetic mechanism for nucleotide addition catalyzed by Pol I has been reported, it remains unclear to what degree different nucleotide sequences impact the incorporation rate constants. Furthermore, it is currently unknown if the previous investigation of a single-nucleotide incorporation was sensitive to the translocation step. Here, we show that Pol I exhibits considerable variability in both kmax and K1/2values using an in vitro multi-NTP incorporation assay measuring AMP and GMP incorporations. We found the first two observed nucleotide incorporations exhibited faster kmax-values (∼200 s-1) compared with the remaining seven positions (∼60 s-1). Additionally, the average K1/2 for ATP incorporation was found to be approximately threefold higher compared with GTP, suggesting Pol I has a tighter affinity for GTP compared with ATP. Our results demonstrate that Pol I exhibits significant variability in the observed rate constant describing each nucleotide incorporation. Understanding of the differences between the Pol enzymes will provide insight on the evolutionary pressures that led to their specialized roles. Therefore, the findings resulting from this work are critically important for comparisons with other polymerases across all domains of life.


Assuntos
Nucleotídeos , RNA Polimerase I , Catálise , Cinética , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Polimerase II
5.
Biophys J ; 120(10): 1883-1893, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737158

RESUMO

Eukaryotes express three DNA-dependent RNA polymerases (Pols) that are responsible for the entirety of cellular genomic expression. The three Pols have evolved to express specific cohorts of RNAs and thus have diverged both structurally and functionally to efficiently execute their specific transcriptional roles. One example of this divergence is Pol I's inclusion of a proofreading factor as a bona fide subunit, as opposed to Pol II, which recruits a transcription factor, TFIIS, for proofreading. The A12.2 (A12) subunit of Pol I shares homology with both the Rpb9 subunit of Pol II as well as the transcription factor TFIIS, which promotes RNA cleavage and proofreading by Pol II. In this study, the functional contribution of the TFIIS-like C-terminal domain and the Rpb9-like N-terminal domain of the A12 subunit are probed through mutational analysis. We found that a Pol I mutant lacking the C-terminal domain of the A12 subunit (ΔA12CTD Pol I) is slightly faster than wild-type Pol I in single-nucleotide addition, but ΔA12CTD Pol I lacks RNA cleavage activity. ΔA12CTD Pol I is likewise similar to wild-type Pol I in elongation complex stability, whereas removal of the entire A12 subunit (ΔA12 Pol I) was previously demonstrated to stabilize transcription elongation complexes. Furthermore, the ΔA12CTD Pol I is sensitive to downstream sequence context, as ΔA12CTD Pol I exposed to AT-rich downstream DNA is more arrest prone than ΔA12 Pol I. These data demonstrate that the N-terminal domain of A12 does not stimulate Pol I intrinsic RNA cleavage activity, but rather contributes to core transcription elongation properties of Pol I.


Assuntos
RNA Polimerase I , Proteínas de Saccharomyces cerevisiae , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
6.
J Biol Chem ; 295(5): 1288-1299, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31843971

RESUMO

The sequence of the DNA template has long been thought to influence the rate of transcription by DNA-dependent RNA polymerases, but the influence of DNA sequence on transcription elongation properties of eukaryotic RNA polymerase I (Pol I) from Saccharomyces cerevisiae has not been defined. In this study, we observe changes in dinucleotide production, transcription elongation complex stability, and Pol I pausing in vitro in response to downstream DNA. In vitro studies demonstrate that AT-rich downstream DNA enhances pausing by Pol I and inhibits Pol I nucleolytic cleavage activity. Analysis of Pol I native elongating transcript sequencing data in Saccharomyces cerevisiae suggests that these downstream sequence elements influence Pol I in vivo Native elongating transcript sequencing studies reveal that Pol I occupancy increases as downstream AT content increases and decreases as downstream GC content increases. Collectively, these data demonstrate that the downstream DNA sequence directly impacts the kinetics of transcription elongation prior to the sequence entering the active site of Pol I both in vivo and in vitro.


Assuntos
RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Sequência Rica em At/genética , Composição de Bases/genética , Sequência de Bases , DNA Fúngico/química , Mutação , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Clivagem do RNA/genética , RNA Polimerase I/genética , Saccharomyces cerevisiae/enzimologia
7.
Biophys J ; 119(7): 1335-1350, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32997959

RESUMO

The multitude of varied, energy-dependent processes that exist in the cell necessitate a diverse array of macromolecular machines to maintain homeostasis, allow for growth, and facilitate reproduction. ATPases associated with various cellular activity are a set of protein assemblies that function as molecular motors to couple the energy of nucleoside triphosphate binding and hydrolysis to mechanical movement along a polymer lattice. A recent boom in structural insights into these motors has led to structural hypotheses on how these motors fulfill their function. However, in many cases, we lack direct kinetic measurements of the dynamic processes these motors undergo as they transition between observed structural states. Consequently, there is a need for improved techniques for testing the structural hypotheses in solution. Here, we apply transient-state fluorescence anisotropy and total fluorescence stopped-flow methods to the analysis of polypeptide translocation catalyzed by these ATPase motors. We specifically focus on the Hsp100-Clp protein system of ClpA, which is a well-studied, model ATPases associated with various cellular activity system that has both eukaryotic and archaea homologs. Using this system, we show that we can reproduce previously established kinetic parameters from the simultaneous analysis of fluorescence anisotropy and total fluorescence and overcome previous limitations of our previous approach. Specifically, for the first time, to our knowledge, we obtain quantitative interpretations of the translocation of polypeptide substrates longer than 100 aa.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina , Adenosina Trifosfatases/metabolismo , Anisotropia , Hidrólise , Cinética
8.
Biophys J ; 116(10): 1856-1872, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31027887

RESUMO

Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a "partial threading" model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Choque Térmico/genética , Hidrólise , Cinética , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
9.
Biochemistry ; 58(16): 2116-2124, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30912638

RESUMO

Eukaryotic cells express at least three nuclear RNA polymerases (Pols), each with a unique set of gene targets. Though these enzymes are homologous, there are many differences among the Pols. In this study, a novel assay for Pol I transcription elongation was developed to probe enzymatic differences among the Pols. In Saccharomyces cerevisiae, a mutation in the universally conserved hinge region of the trigger loop, E1103G, induces a gain of function in the Pol II elongation rate, whereas the corresponding mutation in Pol I, E1224G, results in a loss of function. The E1103G Pol II mutation stabilizes the closed conformation of the trigger loop, promoting the catalytic step, the putative rate-limiting step for Pol II. In single-nucleotide and multinucleotide addition assays, we observe a decrease in the rate of nucleotide addition and dinucleotide cleavage activity by E1224G Pol I and an increase in the rate of misincorporation. Collectively, these data suggest that Pol I is at least in part rate-limited by the same step as Pol II, the catalytic step.


Assuntos
Ensaios Enzimáticos/métodos , Células Eucarióticas/metabolismo , RNA Polimerase II/genética , RNA Polimerase I/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Biocatálise , Domínio Catalítico/genética , Células Eucarióticas/enzimologia , Evolução Molecular , Variação Genética , Mutação de Sentido Incorreto , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Biophys J ; 114(11): 2507-2515, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874602

RESUMO

Despite sharing a highly conserved core architecture with their prokaryotic counterparts, eukaryotic multisubunit RNA polymerases (Pols) have undergone structural divergence and biological specialization. Interesting examples of structural divergence are the A12.2 and C11 subunits of Pols I and III, respectively. Whereas all known cellular Pols possess cognate protein factors that stimulate cleavage of the nascent RNA, Pols I and III have incorporated their cleavage factors as bona fide subunits. Although it is not yet clear why these polymerases have incorporated their cleavage factors as subunits, a picture is emerging that identifies roles for these subunits beyond providing nucleolytic activity. Specifically, it appears that both A12.2 and C11 are required for efficient termination of transcription by Pols I and III. Given that termination involves destabilization of the elongation complex (EC), we tested whether A12.2 influences stability of the Pol I EC. Using, to our knowledge, a novel assay to measure EC dissociation kinetics, we have determined that A12.2 is an intrinsic destabilizer of the Pol I EC. In addition, the salt concentration dependence of Pol I EC dissociation kinetics suggests that A12.2 alters electrostatic interactions within the EC. Importantly, these data present a mechanistic basis for the requirement of A12.2 in Pol I termination. Combined with recent work demonstrating the direct involvement of A12.2 in Pol I nucleotide incorporation, this study further supports the concept that A12.2 cannot be viewed solely as a cleavage factor.


Assuntos
Subunidades Proteicas/metabolismo , RNA Polimerase I/química , RNA Polimerase I/metabolismo , Sequência de Bases , Estabilidade Enzimática , RNA/genética , RNA/metabolismo , Saccharomyces cerevisiae/enzimologia
11.
Biochemistry ; 57(26): 3665-3675, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29812913

RESUMO

ClpB and DnaKJE provide protection to Escherichia coli cells during extreme environmental stress. Together, this co-chaperone system can resolve protein aggregates, restoring misfolded proteins to their native form and function in solubilizing damaged proteins for removal by the cell's proteolytic systems. DnaK is the component of the KJE system that directly interacts with ClpB. There are many hypotheses for how DnaK affects ClpB-catalyzed disaggregation, each with some experimental support. Here, we build on our recent work characterizing the molecular mechanism of ClpB-catalyzed polypeptide translocation by developing a stopped-flow FRET assay that allows us to detect ClpB's movement on model polypeptide substrates in the absence or presence of DnaK. We find that DnaK induces ClpB to dissociate from the polypeptide substrate. We propose that DnaK acts as a peptide release factor, binding ClpB and causing the ClpB conformation to change to a low-peptide affinity state. Such a role for DnaK would allow ClpB to rebind to another portion of an aggregate and continue nonprocessive translocation to disrupt the aggregate.


Assuntos
Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Peptídeos/metabolismo , Regulação Alostérica , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica , Especificidade por Substrato
12.
Biochemistry ; 56(42): 5654-5662, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28846843

RESUMO

All cellular RNA polymerases are influenced by protein factors that stimulate RNA polymerase-catalyzed cleavage of the nascent RNA. Despite divergence in amino acid sequence, these so-called "cleavage factors" appear to share a common mechanism of action. Cleavage factors associate with the polymerase through a conserved structural element of the polymerase known as the secondary channel or pore. This mode of association enables the cleavage factor to reach through the secondary channel into the polymerase active site to reorient the active site divalent metal ions. This reorientation converts the polymerase active site into a nuclease active site. Interestingly, eukaryotic RNA polymerases I and III (Pols I and III, respectively) have incorporated their cleavage factors as bona fide subunits known as A12.2 and C11, respectively. Although it is clear that A12.2 and C11 dramatically stimulate the polymerase's cleavage activity, it is not known if or how these subunits affect the polymerization mechanism. In this work we have used transient-state kinetic techniques to characterize a Pol I isoform lacking A12.2. Our data clearly demonstrate that the A12.2 subunit profoundly affects the kinetics and energetics of the elementary steps of Pol I-catalyzed nucleotide incorporation. Given the high degree of conservation between polymerase-cleavage factor interactions, these data indicate that cleavage factor-modulated nucleotide incorporation mechanisms may be common to all cellular RNA polymerases.


Assuntos
Nucleotídeos/química , RNA Polimerase I/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/química , Cinética , Nucleotídeos/metabolismo , RNA Polimerase I/metabolismo , RNA Polimerase III/química , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
13.
Biochemistry ; 56(15): 2071-2075, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28379007

RESUMO

Recent Hsp104 structural studies have reported both planar and helical models of the hexameric structure. The conformation of Hsp104 monomers within the hexamer is affected by nucleotide ligation. After nucleotide-driven hexamer formation, Hsp104-catalyzed disruption of protein aggregates requires binding to the peptide substrate. Here, we examine the oligomeric state of Hsp104 and its peptide binding competency in the absence of nucleotide and in the presence of ADP, ATPγS, AMPPNP, or AMPPCP. Surprisingly, we found that only ATPγS facilitates avid peptide binding by Hsp104. We propose that the modulation between high- and low-peptide affinity states observed with these ATP analogues is an important component of the disaggregation mechanism of Hsp104.


Assuntos
Proteínas de Choque Térmico/metabolismo , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Ligação Proteica
14.
Biochemistry ; 55(12): 1758-71, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26891079

RESUMO

Escherichia coli caseinolytic peptidase B (ClpB) is a molecular chaperone with the unique ability to catalyze protein disaggregation in collaboration with the KJE system of chaperones. Like many AAA+ molecular motors, ClpB assembles into hexameric rings, and this reaction is thermodynamically linked to nucleotide binding. Here we show that ClpB exists in a dynamic equilibrium of monomers, dimers, tetramers, and hexamers in the presence of both limiting and excess ATPγS. We find that ClpB monomer is only able to bind one nucleotide, whereas all 12 sites in the hexameric ring are bound by nucleotide at saturating concentrations. Interestingly, dimers and tetramers exhibit stoichiometries of ∼3 and 7, respectively, which is one fewer than the maximum number of binding sites in the formed oligomer. This observation suggests an open conformation for the intermediates based on the need for an adjacent monomer to fully form the binding pocket. We also report the protein-protein interaction constants for dimers, tetramers, and hexamers and their dependencies on nucleotide. These interaction constants make it possible to predict the concentration of hexamers present and able to bind to cochaperones and polypeptide substrates. Such information is essential for the interpretation of many in vitro studies. Finally, the strategies presented here are broadly applicable to a large number of AAA+ molecular motors that assemble upon nucleotide binding and interact with partner proteins.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Estrutura Quaternária de Proteína , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/fisiologia , Endopeptidase Clp , Nucleotídeos/química , Nucleotídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Quaternária de Proteína/fisiologia
15.
Biochem J ; 470(1): 39-52, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26251445

RESUMO

Escherichia coli caseinolytic protease (Clp)B is a hexameric AAA+ [expanded superfamily of AAA (ATPase associated with various cellular activities)] enzyme that has the unique ability to catalyse protein disaggregation. Such enzymes are essential for proteome maintenance. Based on structural comparisons to homologous enzymes involved in ATP-dependent proteolysis and clever protein engineering strategies, it has been reported that ClpB translocates polypeptide through its axial channel. Using single-turnover fluorescence and anisotropy experiments we show that ClpB is a non-processive polypeptide translocase that catalyses disaggregation by taking one or two translocation steps followed by rapid dissociation. Using single-turnover FRET experiments we show that ClpB containing the IGL loop from ClpA does not translocate substrate through its axial channel and into ClpP for proteolytic degradation. Rather, ClpB containing the IGL loop dysregulates ClpP leading to non-specific proteolysis reminiscent of ADEP (acyldepsipeptide) dysregulation. Our results support a molecular mechanism where ClpB catalyses protein disaggregation by tugging and releasing exposed tails or loops.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Translocação Bacteriana/fisiologia , Endopeptidase Clp , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Dados de Sequência Molecular , Peptídeos/genética , Estrutura Secundária de Proteína
16.
Biophys J ; 109(11): 2382-93, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26636949

RESUMO

Eukaryotes express three or more multisubunit nuclear RNA polymerases (Pols) referred to as Pols I, II, and III, each of which synthesizes a specific subset of RNAs. Consistent with the diversity of their target genes, eukaryotic cells have evolved divergent cohorts of transcription factors and enzymatic properties for each RNA polymerase system. Over the years, many trans-acting factors that orchestrate transcription by the individual Pols have been described; however, little effort has been devoted to characterizing the molecular mechanisms of Pol I activity. To begin to address this gap in our understanding of eukaryotic gene expression, here we establish transient-state kinetic approaches to characterize the nucleotide incorporation mechanism of Pol I. We collected time courses for single turnover nucleotide incorporation reactions over a range of substrate ATP concentrations that provide information on both Pol I's nucleotide addition and nuclease activities. The data were analyzed by model-independent and model-dependent approaches, resulting in, to our knowledge, the first minimal model for the nucleotide addition pathway for Pol I. Using a grid searching approach we provide rigorous bounds on estimated values of the individual elementary rate constants within the proposed model. This work reports the most detailed analysis of Pol I mechanism to date. Furthermore, in addition to their use in transient state kinetic analyses, the computational approaches applied here are broadly applicable to global optimization problems.


Assuntos
Modelos Biológicos , Nucleotídeos/metabolismo , RNA Polimerase I/metabolismo , Cinética , Ligação Proteica , Incerteza
17.
Proteins ; 83(11): 2008-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26313457

RESUMO

Escherichia coli ClpB is a heat shock protein that belongs to the AAA+ protein superfamily. Studies have shown that ClpB and its homologue in yeast, Hsp104, can disrupt protein aggregates in vivo. It is thought that ClpB requires binding of nucleoside triphosphate to assemble into hexameric rings with protein binding activity. In addition, it is widely assumed that ClpB is uniformly hexameric in the presence of nucleotides. Here we report, in the absence of nucleotide, that increasing ClpB concentration leads to ClpB hexamer formation, decreasing NaCl concentration stabilizes ClpB hexamers, and the ClpB assembly reaction is best described by a monomer, dimer, tetramer, hexamer equilibrium under the three salt concentrations examined. Further, we found that ClpB oligomers exhibit relatively fast dissociation on the time scale of sedimentation. We anticipate our studies on ClpB assembly to be a starting point to understand how ClpB assembly is linked to the binding and disaggregation of denatured proteins.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Endopeptidase Clp , Multimerização Proteica , Desdobramento de Proteína , Cloreto de Sódio , Termodinâmica
18.
Proteins ; 83(1): 117-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25363713

RESUMO

Escherichia coli ClpB is a molecular chaperone that belongs to the Clp/Hsp100 family of AAA+ proteins. ClpB is able to form a hexameric ring structure to catalyze protein disaggregation with the assistance of the DnaK chaperone system. Our knowledge of the mechanism of how ClpB recognizes its substrates is still limited. In this study, we have quantitatively investigated ClpB binding to a number of unstructured polypeptides using steady-state anisotropy titrations. To precisely determine the binding affinity for the interaction between ClpB hexamers and polypeptide substrates the titration data were subjected to global non-linear least squares analysis incorporating the dynamic equilibrium of ClpB assembly. Our results show that ClpB hexamers bind tightly to unstructured polypeptides with binding affinities in the range of ∼3-16 nM. ClpB exhibits a modest preference of binding to Peptide B1 with a binding affinity of (1.7 ± 0.2) nM. Interestingly, we found that ClpB binds to an unstructured polypeptide substrate of 40 and 50 amino acids containing the SsrA sequence at the C-terminus with an affinity of (12 ± 3) nM and (4 ± 2) nM, respectively. Whereas, ClpB binds the 11-amino acid SsrA sequence with an affinity of (140 ± 20) nM, which is significantly weaker than other polypeptide substrates that we tested here. We hypothesize that ClpB, like ClpA, requires substrates with a minimum length for optimal binding. Finally, we present evidence showing that multiple ClpB hexamers are involved in binding to polypeptides ≥152 amino acids.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Anisotropia , Caseínas/metabolismo , Endopeptidase Clp , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Especificidade por Substrato , Temperatura
19.
Biochemistry ; 53(16): 2680-8, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24702583

RESUMO

The Fas death receptor-activated death-inducing signaling complex (DISC) regulates apoptosis in many normal and cancer cells. Qualitative biochemical experiments demonstrate that calmodulin (CaM) binds to the death domain of Fas. The interaction between CaM and Fas regulates Fas-mediated DISC formation. A quantitative understanding of the interaction between CaM and Fas is important for the optimal design of antagonists for CaM or Fas to regulate the CaM-Fas interaction, thus modulating Fas-mediated DISC formation and apoptosis. The V254N mutation of the Fas death domain (Fas DD) is analogous to an identified mutant allele of Fas in lpr-cg mice that have a deficiency in Fas-mediated apoptosis. In this study, the interactions of CaM with the Fas DD wild type (Fas DD WT) and with the Fas DD V254N mutant were characterized using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and molecular dynamics (MD) simulations. ITC results reveal an endothermic binding characteristic and an entropy-driven interaction of CaM with Fas DD WT or with Fas DD V254N. The Fas DD V254N mutation decreased the association constant (Ka) for CaM-Fas DD binding from (1.79 ± 0.20) × 10(6) to (0.88 ± 0.14) × 10(6) M(-1) and slightly increased a standard state Gibbs free energy (ΔG°) for CaM-Fas DD binding from -8.87 ± 0.07 to -8.43 ± 0.10 kcal/mol. CD secondary structure analysis and MD simulation results did not show significant secondary structural changes of the Fas DD caused by the V254N mutation. The conformational and dynamical motion analyses, the analyses of hydrogen bond formation within the CaM binding region, the contact numbers of each residue, and the electrostatic potential for the CaM binding region based on MD simulations demonstrated changes caused by the Fas DD V254N mutation. These changes caused by the Fas DD V254N mutation could affect the van der Waals interactions and electrostatic interactions between CaM and Fas DD, thereby affecting CaM-Fas DD interactions. Results from this study characterize CaM-Fas DD interactions in a quantitative way, providing structural and thermodynamic evidence of the role of the Fas DD V254N mutation in the CaM-Fas DD interaction. Furthermore, the results could help to identify novel strategies for regulating CaM-Fas DD interactions and Fas DD conformation and thus to modulate Fas-mediated DISC formation and thus Fas-mediated apoptosis.


Assuntos
Calmodulina/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptor fas/metabolismo , Calmodulina/química , Calorimetria/métodos , Dicroísmo Circular , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Termodinâmica , Receptor fas/química , Receptor fas/genética
20.
Biophys Chem ; 305: 107151, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38088007

RESUMO

Transient state kinetic studies of eukaryotic DNA-dependent RNA polymerases (Pols) in vitro provide quantitative characterization of enzyme activity at the level of individual nucleotide addition events. Previous work revealed heterogeneity in the rate constants governing nucleotide addition by yeast RNA polymerase I (Pol I) for each position on a template DNA. In contrast, the rate constants that described nucleotide addition by yeast RNA polymerase II (Pol II) were more homogeneous. This observation led to the question, what drives the variability of rate constants governing RNA synthesis by Pol I? Are the kinetics of nucleotide addition dictated by the position of the nascent RNA within the polymerase or by the identity of the next encoded nucleotide? In this study, we examine the impact of nucleotide position (i.e. nascent RNA primer length) on the rate constants governing nine sequential nucleotide addition events catalyzed by Pol I. The results reveal a conserved trend in the observed rate constants at each position for all primer lengths used, and highlight that the 9-nucleotide, or 9-mer, RNA primer provides the fastest observed rate constants. These findings suggest that the observed heterogeneity of rate constants for RNA synthesis by Pol I in vitro is driven primarily by the template sequence.


Assuntos
Nucleotídeos , RNA Polimerase I , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Cinética , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA