Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(35): 21495-21503, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32796103

RESUMO

Symbioses are evolutionarily pervasive and play fundamental roles in structuring ecosystems, yet our understanding of their macroevolutionary origins, persistence, and consequences is incomplete. We traced the macroevolutionary history of symbiotic and phenotypic diversification in an iconic symbiosis, lichens. By inferring the most comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) to date (over 3,300 species), we identified shifts among symbiont classes that broadly coincided with the convergent evolution of phylogenetically or functionally similar associations in diverse lineages (plants, fungi, bacteria). While a relatively recent loss of lichenization in Lecanoromycetes was previously identified, our work instead suggests lichenization was abandoned far earlier, interrupting what had previously been considered a direct switch between trebouxiophycean and trentepohlialean algal symbionts. Consequently, some of the most diverse clades of LFF are instead derived from nonlichenized ancestors and re-evolved lichenization with Trentepohliales algae, a clade that also facilitated lichenization in unrelated lineages of LFF. Furthermore, while symbiont identity and symbiotic phenotype influence the ecology and physiology of lichens, they are not correlated with rates of lineage birth and death, suggesting more complex dynamics underly lichen diversification. Finally, diversification patterns of LFF differed from those of wood-rotting and ectomycorrhizal taxa, likely reflecting contrasts in their fundamental biological properties. Together, our work provides a timeline for the ecological contributions of lichens, and reshapes our understanding of symbiotic persistence in a classic model of symbiosis.


Assuntos
Líquens/genética , Líquens/metabolismo , Simbiose/genética , Ascomicetos/genética , Evolução Biológica , Clorófitas/genética , Ecossistema , Filogenia , Análise de Sequência de DNA/métodos
2.
BMC Evol Biol ; 20(1): 2, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906844

RESUMO

BACKGROUND: Regions within the nuclear ribosomal operon are a major tool for inferring evolutionary relationships and investigating diversity in fungi. In spite of the prevalent use of ribosomal markers in fungal research, central features of nuclear ribosomal DNA (nrDNA) evolution are poorly characterized for fungi in general, including lichenized fungi. The internal transcribed spacer (ITS) region of the nrDNA has been adopted as the primary DNA barcode identification marker for fungi. However, little is known about intragenomic variation in the nrDNA in symbiotic fungi. In order to better understand evolution of nrDNA and the utility of the ITS region for barcode identification of lichen-forming fungal species, we generated nearly complete nuclear ribosomal operon sequences from nine species in the Rhizoplaca melanophthalma species complex using short reads from high-throughput sequencing. RESULTS: We estimated copy numbers for the nrDNA operon, ranging from nine to 48 copies for members of this complex, and found low levels of intragenomic variation in the standard barcode region (ITS). Monophyly of currently described species in this complex was supported in phylogenetic inferences based on the ITS, 28S, intergenic spacer region, and some intronic regions, independently; however, a phylogenetic inference based on the 18S provided much lower resolution. Phylogenetic analysis of concatenated ITS and intergenic spacer sequence data generated from 496 specimens collected worldwide revealed previously unrecognized lineages in the nrDNA phylogeny. CONCLUSIONS: The results from our study support the general assumption that the ITS region of the nrDNA is an effective barcoding marker for fungi. For the R. melanophthalma group, the limited amount of potential intragenomic variability in the ITS region did not correspond to fixed diagnostic nucleotide position characters separating taxa within this species complex. Previously unrecognized lineages inferred from ITS sequence data may represent undescribed species-level lineages or reflect uncharacterized aspects of nrDNA evolution in the R. melanophthalma species complex.


Assuntos
Ascomicetos/genética , Código de Barras de DNA Taxonômico , Líquens/genética , Ascomicetos/classificação , Núcleo Celular/genética , Código de Barras de DNA Taxonômico/métodos , DNA Fúngico/genética , DNA Intergênico , DNA Ribossômico , DNA Espaçador Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Líquens/classificação , Filogenia , Simbiose , Sequências de Repetição em Tandem
3.
Mol Phylogenet Evol ; 149: 106821, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32294545

RESUMO

Lichens provide valuable systems for studying symbiotic interactions. In lichens, these interactions are frequently described in terms of availability, selectivity and specificity of the mycobionts and photobionts towards one another. The lichen-forming, green algal genus Trebouxia Puymaly is among the most widespread photobiont, associating with a broad range of lichen-forming fungi. To date, 29 species have been described, but studies consistently indicate that the vast majority of species-level lineages still lack formal description, and new, previously unrecognized lineages are frequently reported. To reappraise the diversity and the evolutionary relationships of species-level lineages in Trebouxia, we assembled DNA sequence data from over 1600 specimens, compiled from a range of sequences from previously published studies, axenic algal cultures, and lichens collected from poorly sampled regions. From these samples, we selected representatives of the currently known genetic diversity in the lichenized Trebouxia and inferred a phylogeny from multi-locus sequence data (ITS, rbcL, cox2). We demonstrate that the current formally described species woefully underrepresent overall species-level diversity in this important lichen-forming algal genus. We anticipate that an integrative taxonomic approach, incorporating morphological and physiological data from axenic cultures with genetic data, will be required to establish a robust, comprehensive taxonomy for Trebouxia. The data presented here provide an important impetus and reference dataset for more reliably characterizing diversity in lichenized algae and in using lichens to investigate the evolution of symbioses and holobionts.


Assuntos
Biodiversidade , Clorófitas/classificação , Líquens/classificação , Filogenia , Clorófitas/anatomia & histologia , Clorófitas/genética , Clorófitas/ultraestrutura , Loci Gênicos , Líquens/genética , Líquens/ultraestrutura , Especificidade da Espécie
4.
Mol Phylogenet Evol ; 150: 106860, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32473336

RESUMO

Species in the fungal genus Sticta form symbiotic associations primarily with either green algae or cyanobacteria, but tripartite associations or photosymbiodemes involving both types of photobionts occur in some species. Sticta is known to associate with green algae in the genus Symbiochloris. However, previous studies have shown that algae from other genera, such as Heveochlorella, may also be suitable partners for Sticta. We examined the diversity of green algal partners in the genus Sticta and assessed the patterns of association between the host fungus and its algal symbiont. We used multi-locus sequence data from multiple individuals collected in Australia, Cuba, Madagascar, Mauritius, New Zealand, Reunion and South America to infer phylogenies for fungal and algal partners and performed tests of congruence to assess coevolution between the partners. In addition, event-based methods were implemented to examine which cophylogenetic processes have led to the observed association patterns in Sticta and its green algal symbionts. Our results show that in addition to Symbiochloris, Sticta associates with green algae from the genera Chloroidium, Coccomyxa, Elliptochloris and Heveochlorella, the latter being the most common algal symbiont associated with Sticta in this study. Geography plays a strong role in shaping fungal-algal association patterns in Sticta as mycobionts associate with different algal lineages in different geographic locations. While fungal and algal phylogenies were mostly congruent, event-based methods did not find any evidence for cospeciation between the partners. Instead, the association patterns observed in Sticta and associated algae, were largely explained by other cophylogenetic events such as host-switches, losses of symbiont and failure of the symbiont to diverge with its host. Our results also show that tripartite associations with green algae evolved multiple times in Sticta.


Assuntos
Ascomicetos/classificação , Clorófitas/classificação , Ascomicetos/genética , Clorófitas/genética , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 18S/química , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética , Simbiose
5.
Mol Phylogenet Evol ; 126: 58-73, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29656104

RESUMO

A major challenge to evolutionary biologists is to understand how biodiversity is distributed through space and time and across the tree of life. Diversification of organisms is influenced by many factors that act at different times and geographic locations but it is still not clear which have a significant impact and how drivers interact. To study diversification, we chose the lichen genus Sticta, by sampling through most of the global range and producing a time tree. We estimate that Sticta originated about 30 million years ago, but biogoegraphic analysis was unclear in estimating the origin of the genus. Furthermore, we investigated the effect of dispersal ability finding that Sticta has a high dispersal rate, as collections from Hawaii showed that divergent lineages colonized the islands at least four times. Symbiont interactions were investigated using BiSSE to understand if green-algal or cyanobacterial symbiont interactions influenced diversification, only to find that the positive results were driven almost completely by Type I error. On the other hand, another BiSSE analysis found that an association with Andean tectonic activity increases the speciation rate of species.


Assuntos
Ascomicetos/classificação , Biodiversidade , Filogenia , Evolução Biológica , Extinção Biológica , Líquens/classificação , Filogeografia , Fatores de Tempo
6.
Mol Phylogenet Evol ; 99: 261-274, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27033947

RESUMO

Identifying factors that influence species interactions is central to research in symbiotic systems. While lichens represent iconic models of symbiosis and play important roles in understanding the biology of symbiotic interactions, patterns of interactions in lichen symbionts and mechanisms governing these relationships are not well characterized. This is due, in part to the fact that current taxonomic approaches for recognizing diversity in lichen symbionts commonly fail to accurately reflect actual species diversity. In this study, we employed DNA-based approaches to circumscribed candidate species-level lineages in rock-posy lichen symbionts (mycobiont=Rhizoplaca s. lat. species; photobiont=Trebouxia species). Our results revealed a high degree of cryptic diversity in both the myco- and photobionts in these lichens. Using the candidate species circumscribed here, we investigated the specificity of the symbionts toward their partners and inferred the relative importance of various factors influencing symbiont interactions. Distinct mycobiont species complexes, ecozones, and biomes are significantly correlated with the occurrence of photobiont OTUs, indicating that complex interactions among mycobiont lineages, ecogeography, and microhabitat determine interactions between photobionts and their mycobionts in lichen symbiosis. One-to-one specificity between mycobiont and photobiont species was not found, with the exception of R. maheui that associated with a single Trebouxia OTU that was not found with other Rhizoplaca s. lat. species. We estimated the most recent common ancestor of the core Rhizoplaca group at c. 62.5Ma, similar in age to the diverse parmelioid core group in the well-studied family Parmeliaceae. However, in contrast to Parmeliaceae, species in Rhizoplaca were found to associate with a narrow range of photobionts. Our study provides important perspectives into species diversity and interactions in iconic lichen symbiotic systems and establishes a valuable framework for continuing research into rock-posy lichens.


Assuntos
Clorófitas/fisiologia , Líquens/fisiologia , Simbiose , Biodiversidade , Clorófitas/classificação , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Fúngico/metabolismo , Líquens/classificação , Líquens/genética , Filogenia , Análise de Sequência de DNA
7.
Fungal Genet Biol ; 78: 16-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25721988

RESUMO

Phylogenetic analysis of 11 genetic loci and results from many genotyping studies revealed significant genetic diversity with the pathogenic Cryptococcus gattii/Cryptococcus neoformans species complex. Genealogical concordance, coalescence-based, and species tree approaches supported the presence of distinct and concordant lineages within the complex. Consequently, we propose to recognize the current C. neoformans var. grubii and C. neoformans var. neoformans as separate species, and five species within C. gattii. The type strain of C. neoformans CBS132 represents a serotype AD hybrid and is replaced. The newly delimited species differ in aspects of pathogenicity, prevalence for patient groups, as well as biochemical and physiological aspects, such as susceptibility to antifungals. MALDI-TOF mass spectrometry readily distinguishes the newly recognized species.


Assuntos
Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Variação Genética , Genótipo , Cryptococcus neoformans/química , Tipagem Molecular , Técnicas de Tipagem Micológica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Mol Phylogenet Evol ; 90: 85-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25987532

RESUMO

Brown parmelioid lichens comprise a number of distinct genera in one of the most species-rich families of lichen-forming fungi, Parmeliaceae (Ascomycota). In spite of their superficial similarity, a number of studies of brown parmelioids have provided important insight into diversification in lichen-forming fungi with cosmopolitan distributions. In this study we assess species diversity, biogeography and diversification of the genus Montanelia, which includes alpine to temperate saxicolous species. We sampled each of the five known species, four of which are known from broad, intercontinental distributions. In order to identify potential biogeographical patterns, each broadly distributed species was represented by individuals collected across their intercontinental distributions. Molecular sequence data were generated for six loci, including three nuclear protein-coding markers (MCM7, RPB1, and RPB2), two nuclear ribosomal markers (ITS and nrLSU), and a fragment of the mitochondrial small subunit. We used three sequence-based species delimitations methods to validate traditional, phenotype-based species and circumscribe previously unrecognized species-level lineages in Montanelia. Relationships among putative lineages and divergence times were estimated within a coalescent-based multi-locus species tree framework. Based on the results of the species delimitation analyses, we propose that the genus Montanelia is likely comprised of six to nine species-level lineages, including previously unrecognized species-level diversity in the nominal taxa M. panniformis and M. tominii. In contrast, molecular sequence data suggest that M. predisjuncta may be conspecific with the widespread taxon M. disjuncta in spite of distinct morphological differences. The rate-based age estimation of the most recent common ancestor of Montanelia (ca. 23.1Ma) was similar to previous estimates based on the fossil record. Furthermore, our data suggest that diversification in Montanelia occurred largely during the Neogene. At least three Montanelia species are broadly distributed throughout Asia, Europe, and North America with no evidence of phylogeographic substructure. In contrast to broadly distributed Montanelia species, our study suggests Pleistocene-dominated diversification and complex biogeographic history in the M. tominii group. Our analyses provide additional insight for understanding diversification and uncovering cryptic diversity in cosmopolitan species of lichen-forming fungi.


Assuntos
Parmeliaceae/classificação , Sequência de Bases , Teorema de Bayes , DNA Fúngico/análise , Dados de Sequência Molecular , Parmeliaceae/genética , Fenótipo , Filogenia , Filogeografia , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Mol Phylogenet Evol ; 76: 202-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24685499

RESUMO

The accurate assessment of species boundaries in symbiotic systems is a prerequisite for the study of speciation, co-evolution and selectivity. Many studies have shown the high genetic diversity of green algae from the genus Trebouxia, the most common photobiont of lichen-forming fungi. However, the phylogenetic relationships, and the amount of cryptic diversity of these algae are still poorly understood, and an adequate species concept for trebouxiophycean algae is still missing. In this study we used a multifaceted approach based on coalescence (GMYC, STEM) and phylogenetic relationships to assess species boundaries in the trebouxioid photobionts of the lichen-forming fungus Lasallia pustulata. We further investigated whether putative species of Trebouxia found in L. pustulata are shared with other lichen-forming fungi. We found that L. pustulata is associated with at least five species of Trebouxia and most of them are shared with other lichen-forming fungi, showing different patterns of species-to-species and species-to-community interactions. We also show that one of the putative Trebouxia species is found exclusively in association with L. pustulata and is restricted to thalli from localities with Mediterranean microclimate. We suggest that the species delimitation method presented in this study is a promising tool to address species boundaries within the heterogeneous genus Trebouxia.


Assuntos
Clorófitas/classificação , Clorófitas/fisiologia , Líquens/classificação , Líquens/genética , Filogenia , Variação Genética , Líquens/fisiologia , Reprodução Assexuada , Análise de Sequência de DNA
10.
Mol Phylogenet Evol ; 79: 132-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24747130

RESUMO

The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach.


Assuntos
Ascomicetos/classificação , Filogenia , Ascomicetos/genética , Núcleo Celular/genética , Genes Fúngicos , Genes Mitocondriais , Funções Verossimilhança , Modelos Genéticos , RNA Ribossômico/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Software
11.
MycoKeys ; 106: 153-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948916

RESUMO

Lichens are an important part of forest ecosystems, contributing to forest biodiversity, the formation of micro-niches and nutrient cycling. Assessing the diversity of lichenised fungi in complex ecosystems, such as forests, requires time and substantial skills in collecting and identifying lichens. The completeness of inventories thus largely depends on the expertise of the collector, time available for the survey and size of the studied area. Molecular methods of surveying biodiversity hold the promise to overcome these challenges. DNA barcoding of individual lichen specimens and bulk collections is already being applied; however, eDNA methods have not yet been evaluated as a tool for lichen surveys. Here, we assess which species of lichenised fungi can be detected in eDNA swabbed from bark surfaces of living trees in central European forests. We compare our findings to an expert floristic survey carried out in the same plots about a decade earlier. In total, we studied 150 plots located in three study regions across Germany. In each plot, we took one composite sample based on six trees, belonging to the species Fagussylvatica, Piceaabies and Pinussylvestris. The eDNA method yielded 123 species, the floristic survey 87. The total number of species found with both methods was 167, of which 48% were detected only in eDNA, 26% only in the floristic survey and 26% in both methods. The eDNA contained a higher diversity of inconspicuous species. Many prevalent taxa reported in the floristic survey could not be found in the eDNA due to gaps in molecular reference databases. We conclude that, currently, eDNA has merit as a complementary tool to monitor lichen biodiversity at large scales, but cannot be used on its own. We advocate for the further development of specialised and more complete databases.

12.
Am J Bot ; 100(5): 844-56, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594913

RESUMO

PREMISE OF THE STUDY: This study elucidates the phylogenetic position of a unique taxon of Graphidaceae occurring on rock in coastal desert areas, assessing its importance for our understanding of the evolution of the largest family of tropical lichenized fungi. • METHODS: We used maximum likelihood and Bayesian approaches to reconstruct a three-gene phylogeny of Graphidaceae and a Bayesian molecular clock approach to estimate divergence dates for major clades, as well as Bayesian ancestral ecogeography state analysis. • KEY RESULTS: The new genus Redonographa represents a new subfamily, Redonographoideae, sister to subfamily Graphidoideae. Redonographa is exclusively saxicolous and restricted to the American Pacific coast from California to central Chile, including Galapagos. It contains four species: Redonographa chilensis comb. nov., R. saxiseda comb. nov., R. saxorum comb. nov., and R. galapagoensis sp. nov. The genus Gymnographopsis, with a similar ecogeography but differing in excipular carbonization and chemistry, is also included in Redonographoideae, with the species G. chilena from Chile and G. latispora from South Africa. Molecular clock analysis indicates that Redonographoideae diverged from Graphidoideae about 132 million years ago (Ma) in the Early Cretaceous. • CONCLUSIONS: The divergence date for subfamilies Redonographoideae and Graphidoideae coincides with the early breakup of Gondwana and ancient origin of the Atacama Desert. However, the common ancestor of Redonographoideae plus Graphidoideae was reconstructed to be tropical-epiphytic. Thus, even if Redonographoideae is subtropical-saxicolous, the hypothesis that Graphidoideae evolved from a subtropical-saxicolous ancestor is not supported.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Evolução Biológica , Demografia , Líquens , Paraparesia Espástica Tropical , Filogenia , Estados Unidos
13.
PhytoKeys ; 222: 27-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252643

RESUMO

Leucobryumscalare was described in 1904 but its taxonomic status has been disputed, being reduced to a variety of Leucobryumaduncum or synonymized with Leucobryumaduncum. The taxonomic confusion of this taxon has remained unresolved. Hence, we revisited the taxonomic status of the taxon using phylogenetic and morphometric approaches. A total of 27 samples from Leucobryumaduncumvar.aduncum and Leucobryumaduncumvar.scalare were used to generate data from four markers, including ITS1, ITS2, atpB-rbcL spacer, and trnL-trnF. The concatenated dataset was used to reconstruct a phylogenetic tree. Both qualitative and quantitative morphological characters were measured and analyzed with Principal Component Analysis (PCA) and PERMANOVA. The results showed that the two taxa are closely related but they are reciprocally monophyletic. Both qualitative and quantitative characters could also separate Leucobryumaduncumvar.scalare from Leucobryumaduncumvar.aduncum as shown with PCA and PERMANOVA. We propose the resurrection of the species rank for Leucobryumscalare as separate from Leucobryumaduncum. This work highlights the need for a more thorough revision of Leucobryum to clarify the actual level of diversity in this genus.

14.
J Fungi (Basel) ; 9(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36675920

RESUMO

Nearly 90% of fungal diversity, one of the most speciose branches in the tree of life, remains undescribed. Lichenized fungi as symbiotic associations are still a challenge for species delimitation, and current species diversity is vastly underestimated. The ongoing democratization of Next-Generation Sequencing is turning the tables. Particularly, reference-based RADseq allows for metagenomic filtering of the symbiont sequence and yields robust phylogenomic trees of closely related species. We implemented reference-based RADseq to disentangle the evolution of neuropogonoid lichens, which inhabit harsh environments and belong to Usnea (Parmeliaceae, Ascomycota), one of the most taxonomically intriguing genera within lichenized fungi. Full taxon coverage of neuropogonoid lichens was sampled for the first time, coupled with phenotype characterizations. More than 20,000 loci of 126 specimens were analyzed through concatenated and coalescent-based methods, including time calibrations. Our analysis addressed the major taxonomic discussions over recent decades. Subsequently, two species are newly described, namely U. aymondiana and U. fibriloides, and three species names are resurrected. The late Miocene and Pliocene-Pleistocene boundary is inferred as the timeframe for neuropogonoid lichen diversification. Ultimately, this study helped fill the gap of fungal diversity by setting a solid backbone phylogeny which raises new questions about which factors may trigger complex evolutionary scenarios.

15.
J Fungi (Basel) ; 9(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132781

RESUMO

Cryptic species are common in lichen-forming fungi and have been reported from different genera in the most speciose family, Parmeliaceae. Herein, we address species delimitation in a group of mainly asexually reproducing Parmelina species. The morphologically distinct P. pastillifera was previously found nested within a morphologically circumscribed P. tiliacea based on several loci. However, these studies demonstrated a relatively high genetic diversity within P. tiliacea sensu lato. Here, we revisit the species delimitation in the group by analyzing single-nucleotide polymorphisms (SNPs) through genome-wide assessment using Restriction-Site-Associated sequencing and population genomic methods. Our data support previous studies and provide further insight into the phylogenetic relationships of the four clades found within the complex. Based on the evidence suggesting a lack of gene flow among the clades, we recognize the four clades as distinct species, P. pastillifera and P. tiliacea sensu stricto, and two new species, P. clandestina sp. nov. and P. mediterranea sp. nov.

16.
iScience ; 26(1): 105770, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590161

RESUMO

Lichens are well known as pioneer organisms or stress-tolerant extremophiles, potentially playing a core role in the early formation of terrestrial ecosystems. Epiphytic macrolichens are known to contribute to the water- and nutrient cycles in forest ecosystem. But due to the scarcity of fossil record, the evolutionary history of epiphytic macrolichens is poorly documented. Based on new fossil of Jurassic Daohugouthallus ciliiferus, we demonstrate the hitherto oldest known macrolichen inhabited a gymnosperm branch. We applied energy dispersive X-ray spectroscopy and geometric morphometric analysis to complementarily verify lichen affinity of D. ciliiferus and quantitatively assess the potential relationships with extant lichenized lineages, providing new approaches for study of this lichen adpression fossil. Considering the results, and the inferred age of D. ciliiferus, a new family, Daohugouthallaceae, is established. This work updates current knowledge to the early evolution of epiphytic macrolichens and reveals more complex lichen-plant interactions in a Jurassic forest ecosystem.

17.
BMC Evol Biol ; 12: 176, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22963132

RESUMO

BACKGROUND: Factors promoting diversification in lichen symbioses remain largely unexplored. While Pleistocene events have been important for driving diversification and affecting distributions in many groups, recent estimates suggest that major radiations within some genera in the largest clade of macrolichens (Parmeliaceae, Ascomycota) vastly predate the Pleistocene. To better understand the temporal placement and sequence of diversification events in lichens, we estimated divergence times in a common lichen-forming fungal genus, Melanohalea, in the Northern Hemisphere. Divergence times were estimated using both concatenated gene tree and coalescent-based multilocus species tree approaches to assess the temporal context of major radiation events within Melanohalea. In order to complement our understanding of processes impacting genetic differentiation, we also evaluated the effects of Pleistocene glacial cycles on population demographics of distinct Melanohalea lineages, differing in reproductive strategies. RESULTS: We found that divergence estimates, from both concatenated gene tree and coalescent-based multilocus species tree approaches, suggest that diversification within Melanohalea occurred predominantly during the Miocene and Pliocene, although estimated of divergence times differed by up to 8.3 million years between the two methods. These results indicate that, in some cases, taxonomically diagnostic characters may be maintained among divergent lineages for millions of years. In other cases, similar phenotypic characters among non-sister taxa, including reproductive strategies, suggest the potential for convergent evolution due to similar selective pressures among distinct lineages. Our analyses provide evidence of population expansions predating the last glacial maximum in the sampled lineages. These results suggest that Pleistocene glaciations were not inherently unfavorable or restrictive for some Melanohalea species, albeit with apparently different demographic histories between sexually and vegetatively reproducing lineages. CONCLUSIONS: Our results contribute to the understanding of how major changes during the Miocene and Pliocene have been important in promoting diversification within common lichen-forming fungi in the northern Hemisphere. Additionally, we provide evidence that glacial oscillations have influenced current population structure of broadly distributed lichenized fungal species throughout the Holarctic.


Assuntos
Ascomicetos/classificação , Evolução Biológica , Líquens/microbiologia , Modelos Genéticos , Ascomicetos/genética , Teorema de Bayes , Líquens/classificação , Líquens/genética , Densidade Demográfica , Análise de Sequência de DNA , Simbiose/genética
18.
Am J Bot ; 99(11): 1764-77, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23092994

RESUMO

PREMISE OF THE STUDY: Diversification in neotropical regions has been attributed to both Tertiary geological events and Pleistocene climatic fluctuations. However, the timing and processes driving speciation in these regions remain unexplored in many important groups. Here, we address the timing of diversification in the neotropical lichenized fungal genus Oropogon (Ascomycota) and assess traditional species boundaries. METHODS: We analyzed sequence data from three loci to assess phenotypically circumscribed Oropogon species from the Oaxacan Highlands, Mexico. We provide a comparison of dated divergence estimates between concatenated gene trees and a calibrated multilocus species-tree using substitution rates for two DNA regions. We also compare estimates from a data set excluding ambiguously aligned regions and a data set including the hyper-variable regions in two ribosomal markers. KEY RESULTS: Phylogenetic reconstructions were characterized by well-supported monophyletic clades corresponding to traditionally circumscribed species, with the exception of a single taxon. Divergence estimates indicate that most diversification of the sampled Oropogon species occurred throughout the Oligocene and Miocene, although diversification of a single closely related clade appears to have occurred during the late Pliocene and into the Pleistocene. Divergence estimates calculated from a data set with ambiguously aligned regions removed were much more recent than those from the full data set. CONCLUSIONS: Overall, our analyses place the majority of divergence events of Oropogon species from the Oaxacan Highlands within the Neogene and provide strong evidence that climatic changes during the Pleistocene were not a major factor driving speciation in the lichenized genus Oropogon in neotropical highlands.


Assuntos
Ascomicetos/genética , Genes Fúngicos/genética , Variação Genética , Líquens/microbiologia , Ascomicetos/classificação , DNA Fúngico/química , DNA Fúngico/genética , México , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo , Clima Tropical
19.
Am J Bot ; 99(12): 2014-26, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23204485

RESUMO

PREMISE OF THE STUDY: In spite of the recent advances in generic and species circumscriptions and in recognizing species diversity in lichen-forming fungi, the timing of speciation and the factors that promote diversification in lichens remain largely unexplored. We used brown parmelioids as a model to assess the timing of divergence and explore the impact of geological and climatic events on lineage divergence and diversification in lichenized fungi. Additionally, to clarify the phylogenetic position of the species currently placed in Melanelia disjuncta group, we evaluated the taxonomic status and phylogenetic relationships within Parmeliaceae. • METHODS: Phylogenetic relationships and divergence time estimates were inferred from a four-loci data set. Alternative hypotheses were tested using Shimodaira-Hasegawa and expected likelihood weights tests. • KEY RESULTS: The M. disjuncta group forms a strongly supported, monophyletic lineage independent from Melanelia s.s. The M. disjuncta clade arose ca. 23.1 million years ago (Ma). Our results suggest that most of the lineages within the clade diversified during the Miocene (17.6 to 11.2 Ma). The split of other brown parmelioids, such as Emodomelanelia-Melanelixia occurred ca. 41.70 Ma, and the radiation of Melanelixia began during the Eocene-Oligocene transition (ca. 33.75 Ma). • CONCLUSIONS: Montanelia is described here as a new genus to accommodate species of the Melanelia disjuncta group. Further, the study indicates that the current species delimitation within the newly described genus requires revision. We provide evidence of lineage divergence of Montanelia at the Oligocene-Miocene boundary. Our results indicate that the diversification during Miocene would have happened during major mountain uplifts.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , DNA Fúngico/genética , Líquens/classificação , Líquens/genética , Clima , Evolução Molecular , Evolução Planetária , Líquens/microbiologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência
20.
Nature ; 443(7113): 818-22, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17051209

RESUMO

The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.


Assuntos
Evolução Molecular , Fungos/genética , Genes Fúngicos/genética , Filogenia , Quitridiomicetos/classificação , Quitridiomicetos/genética , Fungos/classificação , Microsporídios/classificação , Microsporídios/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA