Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 184(1): 120-132.e14, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33382968

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.


Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , SARS-CoV-2/fisiologia , Células A549 , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus Humano 229E/fisiologia , Infecções por Coronavirus/virologia , Coronavirus Humano NL63/fisiologia , Coronavirus Humano OC43/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mapeamento de Interação de Proteínas
2.
Cell ; 160(6): 1099-110, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768906

RESUMO

Hepatitis C virus (HCV) uniquely requires the liver-specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (AGO) during HCV infection showed robust AGO binding on the HCV 5'UTR at known and predicted miR-122 sites. On the human transcriptome, we observed reduced AGO binding and functional mRNA de-repression of miR-122 targets during virus infection. This miR-122 "sponge" effect was relieved and redirected to miR-15 targets by swapping the miRNA tropism of the virus. Single-cell expression data from reporters containing miR-122 sites showed significant de-repression during HCV infection depending on expression level and site number. We describe a quantitative mathematical model of HCV-induced miR-122 sequestration and propose that such miR-122 inhibition by HCV RNA may result in global de-repression of host miR-122 targets, providing an environment fertile for the long-term oncogenic potential of HCV.


Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Proteínas Argonautas/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Hepacivirus/genética , Humanos , Fígado/metabolismo , Fígado/virologia , Dados de Sequência Molecular , RNA Viral/química , Replicação Viral
3.
RNA ; 30(7): 920-937, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38658162

RESUMO

RNA-binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP (coCLIP), a method that combines cross-linking and immunoprecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the RBP human antigen R (HuR). Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule (SG) compartments. We uncover HuR's unique binding preferences within SGs during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP-RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.


Assuntos
Ligação Proteica , Proteínas de Ligação a RNA , RNA , Humanos , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Imunoprecipitação/métodos , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Grânulos Citoplasmáticos/metabolismo , Arsenitos , Células HeLa , Citosol/metabolismo , Células HEK293
4.
Mol Cell ; 67(3): 400-410.e7, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28735896

RESUMO

MicroRNA-122, an abundant and conserved liver-specific miRNA, regulates hepatic metabolism and functions as a tumor suppressor, yet systematic and direct biochemical elucidation of the miR-122 target network remains incomplete. To this end, we performed Argonaute crosslinking immunoprecipitation (Argonaute [Ago]-CLIP) sequencing in miR-122 knockout and control mouse livers, as well as in matched human hepatocellular carcinoma (HCC) and benign liver tissue to identify miRNA target sites transcriptome-wide in two species. We observed a majority of miR-122 binding on 3' UTRs and coding exons followed by extensive binding to other genic and non-genic sites. Motif analysis of miR-122-dependent binding revealed a G-bulged motif in addition to canonical motifs. A large number of miR-122 targets were found to be species specific. Upregulation of several common mouse and human targets, most notably BCL9, predicted survival in HCC patients. These results broadly define the molecular consequences of miR-122 downregulation in hepatocellular carcinoma.


Assuntos
Proteínas Argonautas/genética , Carcinoma Hepatocelular/genética , Imunoprecipitação/métodos , Neoplasias Hepáticas/genética , MicroRNAs/genética , Transcriptoma , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/metabolismo , Sítios de Ligação , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Bases de Dados Genéticas , Regulação para Baixo , Éxons , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , Interferência de RNA , Especificidade da Espécie , Fatores de Tempo , Fatores de Transcrição , Transcrição Gênica , Transfecção , Via de Sinalização Wnt
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443154

RESUMO

The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.


Assuntos
Infecções por Adenoviridae/metabolismo , Adenoviridae/genética , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Infecções por Adenoviridae/genética , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Poro Nuclear/metabolismo , Ligação Proteica , Proteômica , Ribonucleoproteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação , Vírion/metabolismo , Replicação Viral/fisiologia
6.
Health Promot J Austr ; 34(4): 923-931, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36727419

RESUMO

ISSUE ADDRESSED: Philippine contact centres are rife with factors that contribute to work-related stress; health promotion strategies are needed to mitigate the impacts. With a transactional framework with the environment, this study examined the relationship of stress with resilience and the presence of urban green spaces (UGS) in the environment, while accounting for individual characteristics (ie, age, household income, exercise frequency). METHODS: Participants include employees (Stage 1 N = 186; Stage 2 N = 89) from six contact centres in the capital region of the Philippines. A two-stage online survey included standardised instruments to measure stress (10-item Perceived Stress Scale) and resilience (Connor-Davidson Resilience Scale), customised questions to gather demographic information and probe on participants' insights. Google Earth Pro was used for satellite mapping of UGS, followed by on-site ocular inspection. RESULTS: Participants' average stress level was categorised as high; primary stressors included client demands and workload. The objectively measured percentages of UGS in the study sites' vicinity were categorised as low. Participants found UGS visible after careful observation, and majority were aware of UGS in their workplace vicinity. Resilience, household income and awareness of UGS in the vicinity significantly predicted stress levels. CONCLUSION: Contact centre workers experienced high stress levels and their workplaces had little accessible UGS. Resilience, household income and awareness of UGS are significant contributors to stress levels. SO WHAT?: Health promotion in Philippine contact centres could consider strategies that include building resilience, enhancing income security and promoting the awareness of UGS within the workplace vicinity.


Assuntos
Parques Recreativos , Local de Trabalho , Humanos , Filipinas , Inquéritos e Questionários
8.
PLoS Pathog ; 13(10): e1006694, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29084265

RESUMO

Hepatitis C virus (HCV) requires the liver specific micro-RNA (miRNA), miR-122, to replicate. This was considered unique among RNA viruses until recent discoveries of HCV-related hepaciviruses prompting the question of a more general miR-122 dependence. Among hepaciviruses, the closest known HCV relative is the equine non-primate hepacivirus (NPHV). Here, we used Argonaute cross-linking immunoprecipitation (AGO-CLIP) to confirm AGO binding to the single predicted miR-122 site in the NPHV 5'UTR in vivo. To study miR-122 requirements in the absence of NPHV-permissive cell culture systems, we generated infectious NPHV/HCV chimeric viruses with the 5' end of NPHV replacing orthologous HCV sequences. These chimeras were viable even in cells lacking miR-122, although miR-122 presence enhanced virus production. No other miRNAs bound this region. By random mutagenesis, we isolated HCV variants partially dependent on miR-122 as well as robustly replicating NPHV/HCV variants completely independent of any miRNAs. These miRNA independent variants even replicate and produce infectious particles in non-hepatic cells after exogenous delivery of apolipoprotein E (ApoE). Our findings suggest that miR-122 independent HCV and NPHV variants have arisen and been sampled during evolution, yet miR-122 dependence has prevailed. We propose that hepaciviruses may use this mechanism to guarantee liver tropism and exploit the tolerogenic liver environment to avoid clearance and promote chronicity.


Assuntos
Evolução Molecular , Hepacivirus/metabolismo , Hepatite C/metabolismo , MicroRNAs/metabolismo , Tropismo Viral/fisiologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Hepacivirus/genética , Hepatite C/genética , Humanos , MicroRNAs/genética , Mutagênese
9.
EMBO J ; 31(9): 2207-21, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22473208

RESUMO

Epstein-Barr virus (EBV) controls gene expression to transform human B cells and maintain viral latency. High-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) identified mRNA targets of 44 EBV and 310 human microRNAs (miRNAs) in Jijoye (Latency III) EBV-transformed B cells. While 25% of total cellular miRNAs are viral, only three viral mRNAs, all latent transcripts, are targeted. Thus, miRNAs do not control the latent/lytic switch by targeting EBV lytic genes. Unexpectedly, 90% of the 1664 human 3'-untranslated regions targeted by the 12 most abundant EBV miRNAs are also targeted by human miRNAs via distinct binding sites. Half of these are targets of the oncogenic miR-17∼92 miRNA cluster and associated families, including mRNAs that regulate transcription, apoptosis, Wnt signalling, and the cell cycle. Reporter assays confirmed the functionality of several EBV and miR-17 family miRNA-binding sites in EBV latent membrane protein 1 (LMP1), EBV BHRF1, and host CAPRIN2 mRNAs. Our extensive list of EBV and human miRNA targets implicates miRNAs in the control of EBV latency and illuminates viral miRNA function in general.


Assuntos
Herpesvirus Humano 4/genética , MicroRNAs/genética , RNA Viral/genética , Latência Viral/genética , Proteínas Reguladoras de Apoptose/genética , Linfócitos B/virologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Transformação Celular Viral , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , RNA Mensageiro/genética , Transcrição Gênica , Proteínas Virais/genética , Proteínas Wnt/genética
11.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961159

RESUMO

RNA binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP, a method that combines CrossLinking and ImmunoPrecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the well-studied RNA-binding protein HuR. Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule compartments. We uncover HuR's unique binding preferences within stress granules during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP:RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.

12.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37145142

RESUMO

Effective depletion of immune suppressive regulatory T cells (Tregs) in the tumor microenvironment without triggering systemic autoimmunity is an important strategy for cancer immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus with a long history of human use. Here, we report rational engineering of an immune-activating recombinant MVA (rMVA, MVA∆E5R-Flt3L-OX40L) with deletion of the vaccinia E5R gene (encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase, cGAS) and expression of two membrane-anchored transgenes, Flt3L and OX40L. Intratumoral (IT) delivery of rMVA (MVA∆E5R-Flt3L-OX40L) generates potent antitumor immunity, dependent on CD8+ T cells, the cGAS/STING-mediated cytosolic DNA-sensing pathway, and type I IFN signaling. Remarkably, IT rMVA (MVA∆E5R-Flt3L-OX40L) depletes OX40hi regulatory T cells via OX40L/OX40 interaction and IFNAR signaling. Single-cell RNA-seq analyses of tumors treated with rMVA showed the depletion of OX40hiCCR8hi Tregs and expansion of IFN-responsive Tregs. Taken together, our study provides a proof-of-concept for depleting and reprogramming intratumoral Tregs via an immune-activating rMVA.


Assuntos
Neoplasias , Vaccinia virus , Humanos , Vaccinia virus/genética , Linfócitos T CD8-Positivos , Nucleotidiltransferases/genética , Microambiente Tumoral
13.
Science ; 379(6632): eabo3627, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36538032

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.


Assuntos
COVID-19 , Citocinas , Endorribonucleases , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , COVID-19/imunologia , Citocinas/genética , Citocinas/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA de Cadeia Dupla , SARS-CoV-2/genética , Síndrome de Resposta Inflamatória Sistêmica/genética
14.
Nat Commun ; 13(1): 1671, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351885

RESUMO

The pulmonary immune system consists of a network of tissue-resident cells as well as immune cells that are recruited to the lungs during infection and/or inflammation. How these immune components function during an acute poxvirus infection is not well understood. Intranasal infection of mice with vaccinia virus causes lethal pneumonia and systemic dissemination. Here we report that vaccinia C7 is a crucial virulence factor that blocks activation of the transcription factor IRF3. We provide evidence that type II alveolar epithelial cells (AECIIs) respond to pulmonary infection of vaccinia virus by inducing IFN-ß and IFN-stimulated genes via the activation of the MDA5 and STING-mediated nucleic acid-sensing pathways and the type I IFN positive feedback loop. This leads to the recruitment and activation of CCR2+ inflammatory monocytes in the infected lungs and subsequent differentiation into Lyve1- interstitial macrophages (Lyve1- IMs), which efficiently engulf viral particles and block viral replication. Our results provide insights into how innate immune sensing of viral infection by lung AECIIs influences the activation and differentiation of CCR2+ inflammatory monocytes to defend against pulmonary poxvirus infection.


Assuntos
Infecções por Poxviridae , Poxviridae , Vacínia , Células Epiteliais Alveolares/metabolismo , Animais , Pulmão/metabolismo , Camundongos , Monócitos/metabolismo , Poxviridae/metabolismo , Receptores CCR2/metabolismo , Vaccinia virus/genética
15.
Cell Rep ; 40(11): 111321, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103835

RESUMO

Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aciltransferases , Animais , Hepatócitos/metabolismo , Humanos , Lipase/genética , Lipase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Fosfolipases A2 Independentes de Cálcio
17.
Cell Host Microbe ; 29(5): 834-848.e13, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33794184

RESUMO

Argonaute (AGO) proteins bind small RNAs to silence complementary RNA transcripts, and they are central to RNA interference (RNAi). RNAi is critical for regulation of gene expression and antiviral defense in Aedes aegypti mosquitoes, which transmit Zika, chikungunya, dengue, and yellow fever viruses. In mosquitoes, AGO1 mediates miRNA interactions, while AGO2 mediates siRNA interactions. We applied AGO-crosslinking immunoprecipitation (AGO-CLIP) for both AGO1 and AGO2, and we developed a universal software package for CLIP analysis (CLIPflexR), identifying 230 small RNAs and 5,447 small RNA targets that comprise a comprehensive RNAi network map in mosquitoes. RNAi network maps predicted expression levels of small RNA targets in specific tissues. Additionally, this resource identified unexpected, context-dependent AGO2 target preferences, including endogenous viral elements and 3'UTRs. Finally, contrary to current thinking, mosquito AGO2 repressed imperfect targets. These findings expand our understanding of small RNA networks and have broad implications for the study of antiviral RNAi.


Assuntos
Aedes/enzimologia , Aedes/genética , Proteínas Argonautas/metabolismo , Proteínas de Insetos/metabolismo , Interferência de RNA , RNA Viral/metabolismo , Vírus/metabolismo , Aedes/virologia , Animais , Proteínas Argonautas/genética , Imunoprecipitação , Proteínas de Insetos/genética , RNA Viral/genética , Vírus/genética
18.
Cell Host Microbe ; 29(2): 267-280.e5, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33357464

RESUMO

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has devastated the global economy and claimed more than 1.7 million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen SARS-CoV-2 at two physiologically relevant temperatures along with three related coronaviruses (human coronavirus 229E [HCoV-229E], HCoV-NL63, and HCoV-OC43), allowing us to probe this interactome at a much higher resolution than genome-scale studies. This approach yielded several insights, including potential virus-specific differences in Rab GTPase requirements and glycosylphosphatidylinositol (GPI) anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating coronavirus disease 2019 (COVID-19) and help prepare for future coronavirus outbreaks.


Assuntos
COVID-19/virologia , SARS-CoV-2/metabolismo , Sistemas CRISPR-Cas , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/metabolismo , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/metabolismo , Coronavirus Humano OC43 , Genes Virais , Interações Hospedeiro-Patógeno , Humanos , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Science ; 374(6571): 1099-1106, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34648371

RESUMO

Molecular virology tools are critical for basic studies of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. Experimental systems that do not rely on viruses capable of spread are needed for potential use in lower-containment settings. In this work, we use a yeast-based reverse genetics system to develop spike-deleted SARS-CoV-2 self-replicating RNAs. These noninfectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate replicon delivery particles for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and viral variant characterization.


Assuntos
RNA Viral/genética , Replicon/fisiologia , SARS-CoV-2/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Humanos , Interferons/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Plasmídeos , RNA Viral/metabolismo , Replicon/genética , Genética Reversa , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Saccharomyces cerevisiae/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Pseudotipagem Viral , Vírion/genética , Vírion/fisiologia , Replicação Viral
20.
PLoS One ; 16(6): e0252949, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170927

RESUMO

To address the need for simple, safe, sensitive, and scalable SARS-CoV-2 tests, we validated and implemented a PCR test that uses a saliva collection kit use at home. Individuals self-collected 300 µl saliva in vials containing Darnell Rockefeller University Laboratory (DRUL) buffer and extracted RNA was assayed by RT-PCR (the DRUL saliva assay). The limit of detection was confirmed to be 1 viral copy/µl in 20 of 20 replicate extractions. Viral RNA was stable in DRUL buffer at room temperature up to seven days after sample collection, and safety studies demonstrated that DRUL buffer immediately inactivated virus at concentrations up to 2.75x106 PFU/ml. Results from SARS-CoV-2 positive nasopharyngeal (NP) swab samples collected in viral transport media and assayed with a standard FDA Emergency Use Authorization (EUA) test were highly correlated with samples placed in DRUL buffer. Direct comparison of results from 162 individuals tested by FDA EUA oropharyngeal (OP) or NP swabs with co-collected saliva samples identified four otherwise unidentified positive cases in DRUL buffer. Over six months, we collected 3,724 samples from individuals ranging from 3 months to 92 years of age. This included collecting weekly samples over 10 weeks from teachers, children, and parents from a pre-school program, which allowed its safe reopening while at-risk pods were quarantined. In sum, we validated a simple, sensitive, stable, and safe PCR-based test using a self-collected saliva sample as a valuable tool for clinical diagnosis and screening at workplaces and schools.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , SARS-CoV-2 , Saliva/virologia , Instituições Acadêmicas , Manejo de Espécimes , COVID-19/diagnóstico , COVID-19/genética , Criança , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA