RESUMO
BACKGROUND: In the field of ornamental horticulture, phenotypic mutations, particularly in leaf color, are of great interest due to their potential in developing new plant varieties. The introduction of variegated leaf traits in plants like Heliopsis helianthoides, a perennial herbaceous species with ecological adaptability, provides a rich resource for molecular breeding and research on pigment metabolism and photosynthesis. We aimed to explore the mechanism of leaf variegation of Heliopsis helianthoides (using HY2021F1-0915 variegated mutant named HY, and green-leaf control check named CK in 2020 April, May and June) by analyzing the transcriptome and metabolome. RESULTS: Leaf color and physiological parameters were found to be significantly different between HY and CK types. Chlorophyll content of HY was lower than that of CK samples. Combined with the result of Weighted Gene Co-expression Network Analysis (WGCNA), 26 consistently downregulated differentially expressed genes (DEGs) were screened in HY compared to CK subtypes. Among the DEGs, 9 genes were verified to be downregulated in HY than CK by qRT-PCR. The reduction of chlorophyll content in HY might be due to the downregulation of FSD2. Low expression level of PFE2, annotated as ferritin-4, might also contribute to the interveinal chlorosis of HY. Based on metabolome data, differential metabolites (DEMs) between HY and CK samples were significantly enriched on ABC transporters in three months. By integrating DEGs and DEMs, they were enriched on carotenoids pathway. Downregulation of four carotenoid pigments might be one of the reasons for HY's light color. CONCLUSION: FSD2 and PFE2 (ferritin-4) were identified as key genes which likely contribute to the reduced chlorophyll content and interveinal chlorosis observed in HY. The differential metabolites were significantly enriched in ABC transporters. Carotenoid biosynthesis pathway was highlighted with decreased pigments in HY individuals. These findings not only enhance our understanding of leaf variegation mechanisms but also offer valuable insights for future plant breeding strategies aimed at preserving and enhancing variegated-leaf traits in ornamental plants.
Assuntos
Metaboloma , Folhas de Planta , Transcriptoma , Folhas de Planta/metabolismo , Folhas de Planta/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Pigmentação/genéticaRESUMO
BACKGROUND: SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS: SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS: SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS: SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.
Assuntos
Células Epiteliais , Pólipos Nasais , Rinite , Fator de Transcrição STAT6 , Transdução de Sinais , Sinusite , Humanos , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/genética , Pólipos Nasais/metabolismo , Pólipos Nasais/patologia , Pólipos Nasais/imunologia , Sinusite/metabolismo , Sinusite/patologia , Sinusite/imunologia , Rinite/metabolismo , Rinite/patologia , Doença Crônica , Células Epiteliais/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/genética , Feminino , Masculino , Quimiocina CCL26/metabolismo , Quimiocina CCL26/genética , Adulto , Pessoa de Meia-Idade , Eosinofilia/metabolismo , Eosinofilia/patologia , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Mucosa Nasal/imunologia , Regulação da Expressão Gênica , RinossinusiteRESUMO
Hydrological connectivity is crucial for the healthy operation of wetland ecosystems. However, the current design of ecological corridors in wetland biodiversity networks is mostly based on species migration resistance, neglecting the important role of hydrological connectivity. How to incorporate hydrological connectivity into the wetland ecological corridor system (ECS) is still unclear. To answer the question, we proposed a framework for constructing a wetland ECS with the goal of improving conservation value of previously identified wetland biodiversity hotspots based on hydrological connectivity. In the proposed framework, we clarified the function-level-dimension of each corridor based on the dynamics of conservation value of biodiversity hotspots, the hierarchical classification of rivers and the dimension of hydrological connectivity. Then we determined the spatial distribution and functional zoning of the corridors by least cost model (LCM) using indicators that reflect wetland hydrological connectivity resistance, including water coverage, water use efficiency of vegetation, and land use suitability. The results are as follows: (1) to improve the overall hydrological connectivity and conservation value of biodiversity hotspots, 25 corridors should be constructed for vertical hydrological connectivity (with 3 for maintaining the status quo, 6 for improving and 16 for restoring connectivity) and 3 corridors should be constructed for lateral hydrological connectivity; (2) total area of all corridors are 11 km2, accounting for 6.79% of the study area (2.47% of core zone and 4.32% of buffer zone); (3) low suitability areas of hydrological vegetation gradient (HVG) are the most extensive, followed by low suitability areas of land use/cover change (LUCC) and the average fraction coverage of water surface (AFCW), accounting for 65.08%, 47.87% and 6.76% of the corridor coverage, respectively. The proposed framework of constructing wetland ECS in this study has the potential to provide the post-2020 global biodiversity framework and sustainable development goals with specific technical support and more targeted-control strategies for building a hydrological connected wetland biodiversity network.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Hidrologia , Áreas Alagadas , Conservação dos Recursos Naturais/métodos , Ecossistema , RiosRESUMO
PURPOSE: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease characterized histologically by hyperplastic nasal epithelium and epithelial cells proliferation. Cysteine-rich angiogenic inducer 61 (CYR61) acts as a positive regulator of cell cycle process. Cyclin D1 (CCND1) and c-Myc play key roles in the processes of cell cycle and cell growth. The purpose of our research was to explore the expression and roles of CYR61, CCND1 and c-Myc in CRSwNP. METHODS: FeaturePlot and vlnPlot functions embedded in the seurat package (version 4.1.1) of R software (version 4.2.0) were applied to explore the cellular distribution of CYR61, CCND1 and c-Myc in the single-cell RNA sequencing (scRNA-seq) dataset of nasal tissue samples. CYR61, CCND1 and c-Myc immunolabeling and mRNA levels in nasal tissue samples were assessed by immunohistochemistry and real-time PCR. Co-localization of CYR61, CCND1 and c-Myc with basal epithelial cell marker P63 was assayed using double-label immunofluorescence staining. Furthermore, we collected and cultured human nasal epithelial cells (HNEC) to assess the regulation and role of CYR61 in vitro study. RESULTS: CYR61, CCND1 and c-Myc were primarily expressed by nasal epithelial cells. Significant upregulation of CYR61, CCND1 and c-Myc positive cells and increased levels of CYR61, CCND1 and c-Myc mRNA were found in nasal polyps in comparison to control samples. Of note, CYR61 mRNA and protein levels were altered by SEB, LPS, IFN-γ, IL-13, IL-17A and TGF-ß1 in HNEC. In addition, CYR61 intervention could increase CCND1 and c-Myc mRNA and protein levels to promote HNEC proliferation, and siRNA against ITGA2 (si-ITGA2) could reverse CYR61 induced upregulation of CCND1 and c-Myc mRNA and protein levels in HNEC and cell proliferation of HNEC. CONCLUSIONS: CYR61, CCND1 and c-Myc were primarily expressed by epithelial cells in nasal mucosa. CYR61, CCND1 and c-Myc expression levels were increased in CRSwNP compared with controls. CYR61 could interact with ITGA2 to enhance HNEC proliferation via upregulating CCND1 and c-Myc levels in the HNEC, leading to hyperplastic nasal epithelium in CRSwNP.
Assuntos
Proteína Rica em Cisteína 61 , Pólipos Nasais , Rinite , Humanos , Proliferação de Células , Doença Crônica , Ciclina D1/genética , Ciclina D1/metabolismo , Células Epiteliais/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/metabolismo , Rinite/metabolismo , RNA Mensageiro/metabolismo , Proteína Rica em Cisteína 61/metabolismoRESUMO
BACKGROUND: Emerging studies suggest that whole genome sequencing provides additional diagnostic yield of genomic variants when compared with chromosomal microarray analysis in the etiologic diagnosis of infants and children with suspected genetic diseases. However, the application and evaluation of whole genome sequencing in prenatal diagnosis remain limited. OBJECTIVE: This study aimed to evaluate the accuracy, efficacy, and incremental yield of whole genome sequencing in comparison with chromosomal microarray analysis for routine prenatal diagnosis. STUDY DESIGN: In this prospective study, a total of 185 unselected singleton fetuses with ultrasound-detected structural anomalies were enrolled. In parallel, each sample was subjected to whole genome sequencing and chromosomal microarray analysis. Aneuploidies and copy number variations were detected and analyzed in a blinded fashion. Single nucleotide variations and insertions and deletions were confirmed by Sanger sequencing, and trinucleotide repeats expansion variants were verified using polymerase chain reaction plus fragment-length analysis. RESULTS: Overall, genetic diagnoses using whole genome sequencing were obtained for 28 (15.1%) cases. Whole genome sequencing not only detected all these aneuploidies and copy number variations in the 20 (10.8%) diagnosed cases identified by chromosomal microarray analysis, but also detected 1 case with an exonic deletion of COL4A2 and 7 (3.8%) cases with single nucleotide variations or insertions and deletions. In addition, 3 incidental findings were detected including an expansion of the trinucleotide repeat in ATXN3, a splice-sites variant in ATRX, and an ANXA11 missense mutation in a case of trisomy 21. CONCLUSION: Compared with chromosomal microarray analysis, whole genome sequencing increased the additional detection rate by 5.9% (11/185). Using whole genome sequencing, we detected not only aneuploidies and copy number variations, but also single nucleotide variations and insertions and deletions, trinucleotide repeat expansions, and exonic copy number variations with high accuracy in an acceptable turnaround time (3-4 weeks). Our results suggest that whole genome sequencing has the potential to be a new promising prenatal diagnostic test for fetal structural anomalies.
Assuntos
Variações do Número de Cópias de DNA , Ultrassonografia Pré-Natal , Gravidez , Feminino , Lactente , Criança , Humanos , Estudos Prospectivos , Primeiro Trimestre da Gravidez , Diagnóstico Pré-Natal/métodos , Aneuploidia , Sequenciamento Completo do Genoma , Análise em Microsséries , Aberrações CromossômicasRESUMO
Congenital contractural arachnodactyly (CCA) is a rare connective tissue disorder characterized by arachnodactyly, multiple joint contractures, progressive kyphoscoliosis, pectus deformity and abnormal crumpled ears. FBN2 is the only gene currently known to be associated with CCA. In this study, we report on a prenatal case presented with skeletal, cardiac and spinal malformations. And his father had elongated limbs, contractures of the proximal interphalangeal joints, high myopia and scoliosis. We conducted whole exome sequencing (WES) on the fetus-parental trio and a heterozygous variant (hg19 chr5:127,673,685, c.3598 + 4A > G, NM_001999.4) in intron 27 of the FBN2 gene was successfully identified, inherited from the father. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to evaluate the potential splicing effect of this variant, which confirmed that the variant caused a deletion of exon 27 (126 bp) by disrupting the splice-donor site and destroyed the 17th calcium-binding epidermal growth factor-like (cbEGF) domain. Our research not only finds the etiology of the disease in affected individuals and expands the mutation spectrum of FBN2 gene, but also provides genetic counseling and fertility guidance for this family.
RESUMO
This study was performed to assess the association between detection of rare autosomal trisomies (RATs) by non-invasive prenatal screening (NIPS) and adverse pregnancy outcomes. We retrospectively analyzed women with high-risk RATs results from January 2014 to December 2020. The women's clinical information was collected, and their pregnancy outcomes were compared with those of women with low-risk results. In total, 151 (0.24%) RATs results were reported among 62,752 NIPS examinations. Sixty-five women chose to undergo amniocentesis for confirmation, which revealed 3 cases of true fetal mosaicism for RATs and a positive predictive value of 4.6% (3/65). Among the 139 women with available outcomes, 26 (18.7%) had a preterm birth, 10 (7.2%) underwent pregnancy termination because of fetal defects and 5 (3.6%) had miscarriages. Interestingly, compared with the control group, pregnancies in which NIPS revealed trisomy 16 (T16), T22, T9 and T2 were at higher risk of adverse outcomes, including preterm birth, miscarriage and ultrasound abnormalities. However, the risk of adverse outcomes was comparable between the control group and pregnancies with positive results of T7, T3, T8 and T20. In summary, the risk of adverse pregnancy outcomes was higher in women with specific RATs-positive NIPS results. Pregnancies with T16, T22, T9 and T2 results, even if false-positive, should be considered high-risk pregnancies.
Assuntos
Resultado da Gravidez , Diagnóstico Pré-Natal , Trissomia , Cromossomos Humanos Par 16 , Feminino , Seguimentos , Humanos , Recém-Nascido , Mosaicismo , Gravidez , Nascimento Prematuro , Diagnóstico Pré-Natal/métodos , Estudos Retrospectivos , Trissomia/diagnóstico , Trissomia/genéticaRESUMO
BACKGROUND: Multiple sulfatase deficiency (MSD) (MIM#272200) is an ultra-rare autosomal recessive lysosomal storage disorder caused by mutation of the Sulfatase Modifying Factor 1 (SUMF1) gene. METHODS: Herein, we report an eight-year-old boy with a late infantile form of multiple sulfatase deficiency. A combination of copy-number variation sequencing (CNV-seq) and whole-exome sequencing (WES) were used to analyze the genetic cause for the MSD patient. RESULTS: Our results, previously not seen in China, show a novel compound heterozygous mutation with one allele containing a 240.55 kb microdeletion on 3p26.1 encompassing the SETMAR gene and exons 4-9 of the SUMF1 gene, and the other allele containing a novel missense mutation of c.671G>A (p.Arg224Gln) in the SUMF1 gene. Both were inherited from the proband's unaffected parents, one from each. Bioinformatics analyses show the novel variation to be "likely pathogenic." SWISS-MODEL analysis shows that the missense mutation may alter the three-dimensional (3D) structure. CONCLUSIONS: In summary, this study reported a novel compound heterozygous with microdeletion in SUMF1 gene, which has not been reported in China. The complex clinical manifestations of MSD may delay diagnosis; however, molecular genetic analysis of the SUMF1 gene can be performed to help obtain an early diagnosis.
Assuntos
Doença da Deficiência de Múltiplas Sulfatases , Masculino , Humanos , Criança , Doença da Deficiência de Múltiplas Sulfatases/genética , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Sulfatases/genética , Mutação/genética , Mutação de Sentido Incorreto , Biologia Computacional , Histona-Lisina N-Metiltransferase/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genéticaRESUMO
OBJECTIVE: To explore the genetic basis for fetuses with renal anomalies. METHODS: Genomic DNA of four fetuses and their parents was extracted from amniotic fluid and peripheral blood samples and subjected to whole genome sequencing. Candidate variants were predicted according to the American College of Medical Genetics and Genomics (ACMG) guidelines and validated by SNP-array and Sanger sequencing. RESULTS: Two fetuses were found to carry a 1.45 Mb pathogenic microdeletion in 17q12 and a pathogenic 1.85 Mb microduplication at 1q21.1-21.2, respectively. One fetus was found to harbor compound heterozygous variants c.8301del (p.Asn2768Thrfs*18) and c.4481del (p.Asn1494Thrfs*6) of the PKHD1 gene, which were predicted to be pathogenic. And one fetus has harbored homozygous c.1372dup (p.Thr458Asnfs*5) variants of the BBS12 gene, which was predicted to be likely pathogenic. All variants were validated by Sanger sequencing. CONCLUSION: Whole genome sequencing can enable efficient prenatal diagnosis for fetuses with renal anomalies with high accuracy.
Assuntos
Feto , Diagnóstico Pré-Natal , Feminino , Feto/anormalidades , Humanos , Gravidez , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe X-linked recessive neuromuscular disorder. Patients with DMD usually have severe and fatal symptoms, including progressive irreversible muscle weakness and atrophy complicated with gastrocnemius muscle pseudohypertrophy. DMD is caused by mutations in the dystrophin-encoding DMD gene, including large rearrangements and point mutations. This retrospective study was aimed at supplying information on our 4-year clinical experience of DMD genetic and prenatal diagnosis at the Department of Prenatal Diagnosis in Women's Hospital of Nanjing Medical University. METHODS: Multiplex ligation-dependent probe amplification (MLPA) was used to detect the exon deletions or duplications. And Ion AmpliSeq™ panel for inherited disease was used as the next-generation sequencing (NGS) method to identify the point mutations in exons of DMD gene, but the introns were not sequenced. RESULTS: In this study, the large deletions and duplications of DMD gene were detected in 32 (51.6%) of the 62 families, while point mutations were detected in 20 families (32.3%). The remaining 10 families with a negative genetic diagnosis need to be reevaluated for clinical symptoms or be detected by other molecular methods. Notably, six novel mutations were identified, including c.412A > T(p.Lys138*), c.2962delT(p.Ser988Leufs*16), c.6850dupA (p.Ser2284Lysfs*7), c.5139dupA (p.Glu 1714Argfs*5), c.6201_6203delGCCins CCCA(p.Val2069Cysfs*14) and c.10705A > T (p.Lys3569*). In 52 families with positive results, 45 mothers (86.5%) showed positive results during carrier testing and de novo mutations arose in 7 probands. The prenatal diagnosis was offered to 34 fetuses whether the pregnant mother was a carrier or not. As a result, eight male fetuses were affected, three female fetuses were carriers, and the remaining fetuses had no pathogenic mutation. CONCLUSIONS: This study reported that MLPA and NGS could be used for screening the DMD gene mutations. Furthermore, the stepwise procedure of prenatal diagnosis of DMD gene was shown in our study, which is important for assessing the mutation type of fetuses and providing perinatal care in DMD high-risk families.
Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Diagnóstico Pré-Natal/métodos , China , Feminino , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex , Distrofia Muscular de Duchenne/diagnóstico , GravidezRESUMO
Wetland restoration is a major objective of environmental management worldwide. We present a frameworkat the regional level that prioritizes historical biodiversity and restoration suitability. The goal of the framework is to maximize biodiversity gains from restoration while minimizing the cost. We used C-Plan, a prioritization tool for systematic conservation planning (SCP), to balance the biodiversity gains withthe costs of restoration, or restoration suitability. We overlaid historical spatial data from 1995 to estimate historical distributions of 91 biodiversity features. These features were used to conduct an irreplaceability analysis to assess the restoration value of historical biodiversity. We then modelled restoration suitability based on environmental data of six criteria. Finally, we applied a complementarity analysis to achieve the quantitative targets of all biodiversity features while minimizing the cost of restoration. We tested this framework in the highly degraded wetlands ofSanjiang Plain, China. By applying our framework to Sanjiang Plain, we successfully identified areas with both high restoration value and high restoration suitability. The area of this cost-effective plan was an extension of 4620â¯km2, covering 80% of the disappearing wetlands and 4% of the total Sanjiang Plain. Compared to the restoration value-only plan, which had an extension of 4486â¯km2, the cost-effective plan covered a little more area to achievethe targets forall biodiversity features but with lower implementation costs where the proportion of high restoration suitability increases from 43% to 50%.Our prioritization framework can be used to analyse regional restoration efforts in other regions and ecosystems, and inform planners on how to maximize biodiversity gains while minimizing costs.
Assuntos
Ecossistema , Áreas Alagadas , Biodiversidade , China , Conservação dos Recursos NaturaisRESUMO
BACKGROUND: Wilson's disease (WD) is an autosomal recessive disorder characterized by copper accumulation. ATP7B gene mutations lead to ATP7B protein dysfunction, which in turn causes Wilson's disease. CASE PRESENTATION: We describe a male case of Wilson's disease diagnosed at 10 years after routine biochemical test that showed low serum ceruloplasmin levels and Kayser-Fleischer rings in both corneas. Analysis of the ATP7B gene revealed compound heterozygous mutations in the proband, including the reported c.3517G > A mutation and a novel c.532_574del mutation. The c.532_574del mutation covered a 43-bp region in exon 2, and resulted in a frameshift mutation (p.Leu178PhefsX10). By base sequence analysis, two microhomologies (TCTCA) were observed on both deletion breakpoints in the ATP7B gene. Meanwhile, the presence of some sequence motifs associated with DNA breakage near the deletion region promoted DNA strand break. CONCLUSIONS: By comparison, a replication-based mechanism named fork stalling and template switching/ microhomology-mediated break-induced replication (FoSTeS/MMBIR) was used to explain the formation of this novel deletion mutation.
Assuntos
ATPases Transportadoras de Cobre/genética , Mutação da Fase de Leitura , Degeneração Hepatolenticular/genética , Deleção de Sequência , Criança , China , Humanos , Masculino , Linhagem , Análise de Sequência de DNARESUMO
BACKGROUND: Currently, chromosomal microarray analysis is considered the first-tier test in pediatric care and prenatal diagnosis. However, the diagnostic yield of chromosomal microarray analysis for prenatal diagnosis of congenital heart disease has not been evaluated based on a large cohort. OBJECTIVE: Our aim was to evaluate the clinical utility of chromosomal microarray as the first-tier test for chromosomal abnormalities in fetuses with congenital heart disease. STUDY DESIGN: In this prospective study, 602 prenatal cases of congenital heart disease were investigated using single nucleotide polymorphism array over a 5-year period. RESULTS: Overall, pathogenic chromosomal abnormalities were identified in 125 (20.8%) of 602 prenatal cases of congenital heart disease, with 52.0% of them being numerical chromosomal abnormalities. The detection rates of likely pathogenic copy number variations and variants of uncertain significance were 1.3% and 6.0%, respectively. The detection rate of pathogenic chromosomal abnormalities in congenital heart disease plus additional structural anomalies (48.9% vs 14.3%, P < .0001) or intrauterine growth retardation group (50.0% vs 14.3%, P = .044) was significantly higher than that in isolated congenital heart disease group. Additionally, the detection rate in congenital heart disease with additional structural anomalies group was significantly higher than that in congenital heart disease with soft markers group (48.9% vs 19.8%, P < .0001). No significant difference was observed in the detection rates between congenital heart disease with additional structural anomalies and congenital heart disease with intrauterine growth retardation groups (48.9% vs 50.0%), congenital heart disease with soft markers and congenital heart disease with intrauterine growth retardation groups (19.8% vs 50.0%), or congenital heart disease with soft markers and isolated congenital heart disease groups (19.8% vs 14.3%). The detection rate in fetuses with congenital heart disease plus mild ventriculomegaly was significantly higher than in those with other types of soft markers (50.0% vs 15.6%, P < .05). CONCLUSION: Our study suggests chromosomal microarray analysis is a reliable and high-resolution technology and should be used as the first-tier test for prenatal diagnosis of congenital heart disease in clinical practice.
Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Testes Genéticos/métodos , Cardiopatias Congênitas/genética , Análise em Microsséries/métodos , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal/métodos , Transtornos Cromossômicos/genética , Estudos de Viabilidade , Feminino , Marcadores Genéticos , Cardiopatias Congênitas/diagnóstico , Humanos , Gravidez , Estudos ProspectivosRESUMO
OBJECTIVE: To identify pathogenic mutations in 25 Chinese pedigrees affected with congenital adrenal hyperplasia (CAH). METHODS: Mutations of the CYP21A2 gene were detected with locus-specific PCR/restriction endonuclease analysis, multiplex ligation-dependent probe amplification assay, and direct sequencing of the entire CYP21A2 gene. Prenatal diagnosis was offered to fetuses at risk for CAH. RESULTS: All 50 alleles of the CYP21A2 gene carried by the 25 pedigrees were successfully delineated. Large deletions and conversions have accounted for 16 (32%) of the alleles, which included 9 entire CYP21A2 gene deletions, 6 chimeric CYP21A1P/CYP21A2 genes, and 1 partial conversion of the CYP21A2 gene. For the remaining 34 alleles, there were 9 micro-conversions and 4 de novo mutations [including a previously unreported c.62G>A (p.Trp21X) mutation]. Prenatal diagnosis was provided for 28 fetuses with a high risk for CAH, among whom 8 were found to be affected. CONCLUSION: The detection of CYP21A2 gene mutations can facilitate appropriate genetic counseling and prenatal diagnosis for the affected pedigrees.
Assuntos
Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Diagnóstico Pré-Natal , Esteroide 21-Hidroxilase/genética , Povo Asiático , China , Feminino , Humanos , Mutação , Linhagem , GravidezRESUMO
OBJECTIVE: To analyze two fetuses with multiple malformations revealed by ultrasonography using single nucleotide polymorphism array (SNP array), and to explore the strategy for the prenatal diagnosis of 1p36 deletion syndrome. METHODS: Amniocentesis was performed on the two pregnant women. Amnion fluid cells were cultured, and karyotypes of the fetuses were determined through G-banding analysis. Whole genome SNP array was used to detect genomic anomalies of the two fetuses. The karyotypes of their parents were determined through G-banding analysis of peripheral venous blood samples. RESULTS: G-banding analysis showed a 46,XY,add(1p36)? and a 46,XX,add(1p36)? karyotype for fetuses 1 and 2, respectively. SNP array analysis showed that the fetus 1 had arr[19]1p36.33p36.32 (752 566 - 3 393 462)×1 and 7q35q36.3 (144 480 549 - 159 119 486)×3, and fetus 2 had arr[19]1p36.33p36.23 (752 566 - 8 362 754)×1, 6p25.3p22.3 (204 909 - 20 182 185)×3. The mother of fetus 1 had a 46,XX,t(1;7)(p36;q35) karyotype, and the mother of fetus 2 had a 46,XX,t(1;6)(p36;p22) karyotype. The karyotypes of both fathers appeared to be normal. CONCLUSION: SNP array has the advantages such as high sensitivity and high accuracy for prenatal diagnosis, and can provide more detailed information for genetic counseling of 1p36 deletion syndrome.
Assuntos
Transtornos Cromossômicos/diagnóstico , Diagnóstico Pré-Natal , Adulto , Amniocentese , Bandeamento Cromossômico , Deleção Cromossômica , Cromossomos Humanos Par 1 , Feminino , Humanos , Cariotipagem , Polimorfismo de Nucleotídeo Único , GravidezRESUMO
OBJECTIVE: To develop and validate a method for mutation screening and prenatal diagnosis of TSC1/TSC2 mutations among patients with tuberous sclerosis complex (TSC) by Ion Torrent semiconductor sequencing. METHODS: Potential mutations of SC1/TSC2 gene was detected in 2 TSC families and 1 sporadic TSC patient using an Ion Torrent PGM sequencer. Candidate variants were validated by Sanger sequencing. The corresponding site of TSC2 in the fetus of family 2 was also detected with Sanger sequencing. RESULTS: Ion Torrent semiconductor sequencing has identified a probably pathogenic TSC2 mutation (c.311-312insGCTG) in the patient from family 1, and a probably pathogenic TSC2 mutation (c.1790A>G) in the patient of family 2. CONCLUSION: Targeted Ion Torrent PGM sequencing is an accurate and efficient method to detect TSC1/TSC2 mutations in TSC.
Assuntos
Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Adulto , Sequência de Bases , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Gravidez , Diagnóstico Pré-Natal , Esclerose Tuberosa/embriologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Adulto JovemRESUMO
OBJECTIVE: To explore the value of multiplex ligation-dependent probe amplification (MLPA) for rapid detection of aneuploidies and structural chromosomal abnormalities during prenatal diagnosis. METHODS: Two hundred and eight six amniotic fluid samples were analyzed with both MLPA and conventional karyotyping. Structural abnormalities were verified with array comparative genomic hybridization. RESULTS: Ten cases of trisomy 21, 2 cases of trisomy 18, 1 case of trisomy 13, 1 case of mosaic trisomy 21, 1 case of 45,X, 1 case of large deletion of Xp, 1 case of trisomy 18p and 1 case of large deletion of 18p and 18q were identified. The same results were derived by both MLPA and conventional karyotyping. Structural abnormalities were verified by array comparative genomic hybridization (aCGH) with 100% accuracy. CONCLUSION: In addition to aneuploidies, MLPA can rapidly identify large deletions and duplications of chromosomes 21, 18, 13, X and Y. MLPA is supplementary to conventional karyotyping for identification of such chromosomal abnormalities prenatal diagnosis.
Assuntos
Aneuploidia , Reação em Cadeia da Polimerase Multiplex/métodos , Diagnóstico Pré-Natal/métodos , Adulto , Feminino , Humanos , Gravidez , Adulto JovemRESUMO
BACKGROUND: As a screening method, inaccuracies in noninvasive prenatal screening (NIPS) exist, which are often attributable to biological factors. One such factor is the history of transplantation. However, there are still limited reports on such NIPS cases. METHODS: We report an NIPS case of a pregnant woman who had received a stem cell transplant from a male donor. To determine the karyotype in the woman's original cell, we performed chromosome microarray analysis (CMA) on her postnatal blood and oral mucosa. To comprehensively estimate the cell-free DNA (cfDNA) composition, we further performed standard NIPS procedures on the postnatal plasma. Moreover, we reviewed all published relevant NIPS case reports about pregnant women with transplantation history. RESULTS: NIPS showed a low-risk result for common trisomies with a fetal fraction of 65.80%. CMA on maternal white blood cells showed a nonmosaic male karyotype, while the oral mucosa showed a nonmosaic female karyotype. The proportion of donor's cfDNA in postnatal plasma was 94.73% based on the Y-chromosome reads ratio. The composition of cfDNA in maternal plasma was estimated as follows: prenatally, 13.60% maternal, 65.80% donor, and 20.60% fetal/placental, whereas postnatally, 5.27% maternal and 94.73% donor. CONCLUSIONS: This study expanded our understanding of the influence of stem cell transplantation on NIPS, allowing us to optimize NIPS management for these women.
Assuntos
Ácidos Nucleicos Livres , Teste Pré-Natal não Invasivo , Humanos , Feminino , Gravidez , Masculino , Adulto , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Teste Pré-Natal não Invasivo/métodos , Transplante de Células-Tronco , Doadores de Tecidos , Trissomia/genéticaRESUMO
BACKGROUND AND AIMS: Hearing loss is a common sensorineural disease with genetic heterogeneity. More than 140 genes are known to cause hereditary hearing loss. We aim to uncover the etiologies of hearing loss and provide patients with reasonable reproductive choices. MATERIALS AND METHODS: Total 825 participants were recruited, including 74 individuals, 47 couples, and 219 families, to identify the molecular etiologies of hearing loss using next-generation sequencing (NGS). Novel mutations were verified with a minigene splicing assay and the construction of three-dimensional protein models. RESULTS: A positive molecular diagnosis was obtained for 244 patients, a rate of 63.05 %. Total 470 mutations were identified in 18 causative genes in positive patients. The most common genes mutated were GJB2 and SLC26A4. 47 novel mutations were identified. Further analysis predicted that two splicing mutations would cause abnormal mRNA splicing and three missense mutations would affect the protein structure. The results of prenatal diagnosis showed that the genotypes of 15 fetuses were the same as the probands. CONCLUSION: Our findings expand the mutation spectrum of hearing loss and highlight the importance of genetic diagnosis and prenatal diagnosis to allow accurate and personalized guidance for those at high risk of deafness.