Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Inorg Chem ; 61(4): 2129-2140, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34935376

RESUMO

Combining metallic and ceramic properties, and as precursors for MXenes, MAX phases have attracted extensive attention. In recent years, A-element substitution has been demonstrated as an effective scheme to enrich the MAX family. To explore more possible MAX members, the structural, mechanical, and electronic properties and stabilities of 31 Ti3AC2 (A = Al, Si, P, S, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Os, Ir, Pt, Au, Hg, TI, Pb, Bi, and Po) configurations are investigated in this work. Moreover, the interfacial strength implicating the possibility of exfoliating MAX into MXenes is examined. The A-element plays a crucial role in the lattice parameters and mechanical strength of Ti3AC2, and their variations are well explained by the synergistic effects of d-d and p-d hybridizations between the valence orbitals of Ti and A. Ti3SC2 presents the largest Young's modulus of 360 GPa, which is 6.82% higher than that in the well-studied Ti3SiC2. Ti3SbC2 is a mechanical quasi-isotropic configuration. After checking the mechanical, dynamical, and thermodynamic stability, Ti3AC2 (A = Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Sb, Au, Hg, Pb, TI, and Po) are stable, while Ti3AC2 (A = Fe, Co, Zn, Se, Ru, Rh, Pd, Ag, Te, Ir, Pt, and Bi) are metastable. Compared to Ti3AlC2, Ti3AC2 (A = Ag, Sb, Te, Bi, and Po) exhibit much lower interfacial strength in Ti-A interfaces and larger ratios between the interfacial strengths of neighboring Ti-C and Ti-A interfaces. This implies that these configurations are promising precursors for the synthesis of Ti3C2Tx (Tx denotes surface groups) with a large flake size. All of the configurations are metallic, and Ti3AC2 (A = Fe and Co) are magnetic. Based on the phonon dispersion and electronic structure, these Ti3AC2 configurations might have potential applications in phononic crystals and topological materials.

2.
Opt Express ; 28(26): 39128-39136, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379469

RESUMO

Two-photon absorption spectra are difficult to observe using direct absorption spectroscopy especially in the near-infrared region. Cavity ring-down spectroscopy is a promising absorption spectroscopy technique which has been widely applied to linear and saturated single-photon absorption spectra. In the present study, we report the observation of a possible two-photon absorption in the near-infrared using cavity ring-down spectroscopy, namely a two-photon resonance of methane. Using an optical frequency comb, the single-photon wavenumber of the double-quantum transition has been determined to be 182 207 682.645 MHz with a standard deviation of 75 kHz.

3.
ACS Appl Mater Interfaces ; 16(43): 59336-59345, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39405584

RESUMO

Flexible thermoelectric (TE) generators have received great attention as a sustainable and reliable option to convert heat from the human body and other ambient sources into electricity. This study provides a synthesis route that involves thermally induced diffusion to introduce Te and Se into Bi, fabricating an n-type Bi-Te-Se flexible thin film on a flexible substrate. This specific synthesis alters the crystal orientation (00l) of the thin film, improving in-plane electrical transportation and optimizing carrier concentration. Consequently, BixTeySe0.42 enhanced both the Seebeck coefficient and electrical conductivity, achieving a power factor of 17.1 µW cm-1 K-2 at room temperature. The TE device assembled with p-type Sb2Te3 exhibited exceptional flexibility with only a 26.2% change in resistance after 1000 times of bending at a radius of about 6 mm. The resistance change was further reduced to 7.5% after the application of a vinyl laurate coating. The fabricated TE device generated an ultrahigh output power of 792 nW with a temperature difference of 30 K.

4.
Nat Commun ; 15(1): 8356, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333137

RESUMO

Ag2Se shows significant potential for near-room-temperature thermoelectric applications, but its performance and device design are still evolving. In this work, we design a novel flexible Ag2Se thin-film-based thermoelectric device with optimized electrode materials and structure, achieving a high output power density of over 65 W m-2 and a normalized power density up to 3.68 µW cm-2 K-2 at a temperature difference of 42 K. By fine-tuning vapor selenization time, we strengthen the (013) orientation and carrier mobility of Ag2Se films, reducing excessive Ag interstitials and achieving a power factor of over 29 µW cm-1 K-2 at 393 K. A protective layer boosts flexibility of the thin film, retaining 90% performance after 1000 bends at 60°. Coupled with p-type Sb2Te3 thin films and rational simulations, the device shows rapid human motion response and precise servo motor control, highlighting the potential of high-performance Ag2Se thin films in advanced applications.

5.
Int J Ophthalmol ; 16(2): 293-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816216

RESUMO

Chemotherapy remains an important approach for the treatment of liver metastases from uveal melanoma (UM). Compared with systemic chemotherapy, regional chemotherapy has similar efficacy and fewer systemic adverse effects. Regional chemotherapy for UM liver metastases includes hepatic artery infusion (HAI), transarterial chemoembolization (TACE), and isolated hepatic perfusion (IHP). In this review, we aim to examine the efficacy of regional chemotherapy and compare HAI, TACE, and IHP in terms of overall survival (OS). The three approaches showed no obvious difference in OS results.

6.
Nanoscale ; 14(29): 10549-10558, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833611

RESUMO

Sodium ion batteries (SIBs) have attracted increasing attention due to their low cost and abundant reserves of sodium, but their ideal anode materials still need to be explored. MXenes could be candidate electrode materials due to their excellent electrical conductivity and large specific surface area. In this work, the theoretical performance of Ti- and Zr-containing MXenes Ti3C2T2 (T = O, F, OH) and Zr3C2T2 (T = O, F, OH, S) as SIB anode materials is investigated. The influence of the Hubbard U correction is discussed, and the behaviour at the MXene surface with the partial occupation of sodium atoms is considered. Including the weight and volume of adsorbed sodium atoms, Ti3C2O2 presents the best performance among the seven MXenes studied. Its mass and volumetric capacities are 299 mA h g-1 and 993 mA h cm-3 respectively, and the migration barrier and open circuit voltage are 0.138 eV and 0.421 V. Both Zr3C2O2 and Zr3C2S2 can adsorb double layers of sodium atoms on both sides, and the former shows a higher capacity because of its lower weight and smaller volume. The mass and volumetric capacities of Zr3C2O2 are 254 mA h g-1 and 913 mA h cm-3 respectively. More importantly, the surface potential is determined to be an effective descriptor for selecting electrode materials. The migration barrier is proportional to the fluctuation amplitude of the surface potential. A low surface potential generally implies a high capacity. A large open circuit voltage is prone to appear in the structure with a large fluctuation amplitude and a low average value of its surface potential.

7.
Adv Mater ; 34(14): e2109078, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104384

RESUMO

Despite the fact that antimony triselenide (Sb2 Se3 ) thin-film solar cells have undergone rapid development in recent years, the large open-circuit voltage (VOC ) deficit still remains as the biggest bottleneck, as even the world-record device suffers from a large VOC deficit of 0.59 V. Here, an effective interface engineering approach is reported where the Sb2 Se3 /CdS heterojunction (HTJ) is subjected to a post-annealing treatment using a rapid thermal process. It is found that nonradiative recombination near the Sb2 Se3 /CdS HTJ, including interface recombination and space charge region recombination, is greatly suppressed after the HTJ annealing treatment. Ultimately, a substrate Sb2 Se3 /CdS thin-film solar cell with a competitive power conversion efficiency of 8.64% and a record VOC of 0.52 V is successfully fabricated. The device exhibits a much mitigated VOC deficit of 0.49 V, which is lower than that of any other reported efficient antimony chalcogenide solar cell.

8.
ACS Nano ; 16(3): 3744-3755, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35234032

RESUMO

Currently, various electronic devices make our life more and more safe, healthy, and comfortable, but at the same time, they produce a large amount of nondegradable and nonrecyclable electronic waste that threatens our environment. In this work, we explore an environmentally friendly and flexible mechanical sensor that is biodegradable and recyclable. The sensor consists of a bacterial cellulose (BC) hydrogel as the matrix and imidazolium perchlorate (ImClO4) molecular ferroelectric as the functional element, the hybrid of which possesses a high sensitivity of 4 mV kPa-1 and a wide operational range from 0.2 to 31.25 kPa, outperforming those of most devices based on conventional functional biomaterials. Moreover, the BC hydrogel can be fully degraded into glucose and oligosaccharides, while ImClO4 can be recyclable and reused for the same devices, leaving no environmentally hazardous electronic waste.


Assuntos
Celulose , Hidrogéis , Materiais Biocompatíveis , Eletrônica
9.
Int J Ophthalmol ; 13(5): 718-724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420217

RESUMO

AIM: To investigate the role of microRNA-145 (miRNA-145) and microRNA-205 (miRNA-205) in proliferation and invasion of uveal melanoma (UM) cells. METHODS: The expression level of miRNA-145 and miRNA-205 from samples of UM patients were determined by real-time polymerase chain reaction (RT-PCR). The growth and invasion inhibitory effects were observed by the transfection of UM cells with miRNA-145 and miRNA-205. Several epithelial-to-mesenchymal transition (EMT)-related proteins were screened by Western blotting. UM clinical samples from The Cancer Genome Atlas (TCGA) were applied to search for potential protein interaction. Pearson's correlation analysis was applied to estimate co-expression between genes. Dual-luciferase reporter assay was used to verify the binding sites on target protein for miRNA-145 and miRNA-205. RESULTS: The expression levels of miRNA-145 and miRNA-205 in the samples from patients with UM were significantly lower than those in the normal tissue samples. Significant growth and invasion inhibitory effects were observed in human UM cells with miRNA-145 and miRNA-205 overexpression. The miRNA-145 and miRNA-205 could decrease the expression level of cell division control protein 42 (CDC42). After database searching and sequence alignment, we identified that Neuropilin 1 (NRP1) had binding sites for both miRNA-145 and miRNA-205. CONCLUSION: The miRNA-145 and miRNA-205 can reduce the proliferation, migration and invasion of UM cells by targeting the mRNA of its upstream protein NRP1 to down-regulate the expression level of CDC42.

10.
ACS Sens ; 5(8): 2563-2569, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32686395

RESUMO

Versatile, in situ sensing and continuous monitoring capabilities are critically needed, but challenging, for components made of solid woven carbon fibers in aerospace, electronics, and medical applications. In this work, we proposed a unique concept of integrated sensing technology on woven carbon fibers through integration of thin-film surface acoustic wave (SAW) technology and electromagnetic metamaterials, with capabilities of noninvasive, in situ, and continuous monitoring of environmental parameters and biomolecules wirelessly. First, we fabricated composite materials using a three-layer composite design, in which the woven carbon fiber cloth was first coated with a polyimide (PI) layer followed by a layer of ZnO film. Integrated SAW and metamaterials devices were then fabricated on this composite structure. The temperature of the functional area of the device could be controlled precisely using the SAW devices, which could provide a proper incubation environment for biosampling processes. As an ultraviolet light sensor, the SAW device could achieve a good sensitivity of 56.86 ppm/(mW/cm2). On the same integrated platform, an electromagnetic resonator based on the metamaterials was demonstrated to work as a glucose concentration monitor with a sensitivity of 0.34 MHz/(mg/dL).


Assuntos
Eletrônica , Som , Fibra de Carbono , Monitorização Fisiológica
11.
Lab Chip ; 20(5): 1002-1011, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32026889

RESUMO

Integration of microfluidics and biosensing functionalities on a single device holds promise in continuous health monitoring and disease diagnosis for point-of-care applications. However, the required functions of fluid handling and biomolecular sensing usually arise from different actuation mechanisms. In this work, we demonstrate that a single acoustofluidic device, based on a flexible thin film platform, is able to generate hybrid wave modes, which can be used for fluidic actuation (Lamb waves) and biosensing (thickness shear waves). On this integrated platform, we show multiple and sequential functions of mixing, transport and disposal of liquid volumes using Lamb waves, whilst the thickness bulk shear waves allow us to sense the chemotherapeutic Imatinib, using an aptamer-based strategy, as would be required for therapy monitoring. Upon binding, the conformation of the aptamer results in a change in coupled mass, which has been detected. This platform architecture has the potential to generate a wide range of simple sample-to-answer biosensing acoustofluidic devices.


Assuntos
Técnicas Biossensoriais , Microfluídica , Acústica , Sistemas Automatizados de Assistência Junto ao Leito
12.
Sci Rep ; 9(1): 17422, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758007

RESUMO

Hybrid two-dimensional (2D) halide perovskites has been widely studied due to its potential application for high performance perovskite solar cells. Understanding the relationship between microstructural and opto-electronic properties is very important for fabricating high-performance 2D perovskite solar cell. In this work, the effect of solvent annealing on grain growth was investigated to enhance the efficiency of photovoltaic devices with 2D perovskite films based on (BA)2(MA)3Pb4I13 prepared by single-source thermal evaporation. Results show that solvent annealing with the introduction of solvent vapor can effectively enhance the crystallization of the (BA)2(MA)3Pb4I13 thin films and produce denser, larger-crystal grains. The thin films also display a favorable band gap of 1.896 eV, which benefits for increasing the charge-diffusion lengths. The solvent-annealed (BA)2(MA)3Pb4I13 thin-film solar cell prepared by single-source thermal evaporation shows an efficiency range of 2.54-4.67%. Thus, the proposed method can be used to prepare efficient large-area 2D perovskite solar cells.

13.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835756

RESUMO

Lead-free double perovskites have been considered as a potential environmentally friendly photovoltaic material for substituting the hybrid lead halide perovskites due to their high stability and nontoxicity. Here, lead-free double perovskite Cs2AgBiBr6 films are initially fabricated by single-source evaporation deposition under high vacuum condition. X-ray diffraction and scanning electron microscopy characterization show that the high crystallinity, flat, and pinhole-free double perovskite Cs2AgBiBr6 films were obtained after post-annealing at 300 °C for 15 min. By changing the annealing temperature, annealing time, and film thickness, perovskite Cs2AgBiBr6 solar cells with planar heterojunction structure of FTO/TiO2/Cs2AgBiBr6/Spiro-OMeTAD/Ag achieve an encouraging power conversion efficiency of 0.70%. Our preliminary work opens a feasible approach for preparing high-quality double perovskite Cs2AgBiBr6 films wielding considerable potential for photovoltaic application.

15.
RSC Adv ; 8(11): 6063-6068, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539614

RESUMO

In this work, using a conventional magnetron sputtering system, Al-doped ZnO (AZO) films with (112̄0) and (0002) preferential orientations were grown on r-sapphire and a-sapphire substrates, respectively. The effect of substrate and deposition temperature on the growth of AZO films and their preferential orientations were investigated. The crystallographic characteristics of AZO films were characterized by X-ray diffraction (XRD). The surface morphology of AZO films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It is found that the lattice mismatch between AZO and substrate determines the growth of AZO films and their preferential orientations. The thermoelectric properties are strongly dependent on the crystal grain shape and the grain boundaries induced by the preferred orientation. The highly connected and elongated grains lead to high thermoelectric properties. The in-plane anisotropy performances of thermoelectric characteristics were found in the (112̄0) preferential oriented ZnO films. The in-plane power factor of the (112̄0) preferential oriented ZnO films in the [0001] direction was more than 1.5 × 10-3 W m-1 K-2 at 573 K, which is larger than that of the (0002) preferential oriented ZnO films.

16.
Nanoscale ; 10(28): 13511-13519, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29972169

RESUMO

The performance of organic-inorganic hybrid thermoelectric thin films can be dramatically enhanced by optimizing energy filtering and carrier transport states at the organic-inorganic interfaces. In this work, p-type "Sb2Te3/CH3NH3I/Sb2Te3" multilayer thin films were firstly fabricated with varied contents of CH3NH3I, and then an annealing process was used in order to form homogeneous organic-inorganic hybrid thin films. The results revealed that the introduced organic component can promote thin film growth and develop a dense nanostructure with improved crystallinity, thus resulting in a significantly increased Seebeck coefficient and a reduced thermal conductivity as a result of the optimized electronic transport characteristics and enhanced effects of phonon scattering. As is expected, the thermoelectric performance of the hybrid-nanocomposite films is enhanced, achieving the maximum ZT value of 1.55 at a temperature of 413 K, which is several times higher than that of the as-fabricated film, thereby suggesting that the proposed strategy can be applied as an efficient method for the preparation of high-performance thermoelectric thin films.

17.
Ultrasonics ; 75: 63-70, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27930917

RESUMO

A multilayer structure of TeO2/interdigital transducers (IDTs)/ZnO(112¯0)/Si(100) was proposed and investigated to achieve both high sensitivity and temperature-stability for bio-sensing applications. Dispersions of phase velocities, electromechanical coupling coefficients K2, temperature coefficient of delay (TCD) and sensitivity in the multilayer structures were simulated as functions of normalized thicknesses of ZnO (hZnO/λ) and TeO2 (hTeO2/λ) films. The fundamental mode of Love mode (LM) - surface acoustic wave (SAW) shows a larger value of K2 and higher sensitivity compared with those of the first mode. TeO2 film with a positive TCD not only compensates the temperature effect induced due to the negative TCD of ZnO(112¯0)/Si(100), but also enhances the sensitivity of the love mode device. The optimal normalized thickness ratios were identified to be hTeO2/λ=0.021 and hZnO/λ=0.304, and the devices with such structures can which generate a normalized sensitivity of -1.04×10-3m3/kg, a TCD of 0.009ppm/°C, and a K2 value of 2.76%.

19.
Sci Rep ; 6: 29910, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27426686

RESUMO

In this work, an alternative route to fabricating high-quality CH3NH3PbI3 thin films is proposed. Single-source physical vapour deposition (SSPVD) without a post-heat-treating process was used to prepare CH3NH3PbI3 thin films at room temperature. This new process enabled complete surface coverage and moisture stability in a non-vacuum solution. Moreover, the challenges of simultaneously controlling evaporation processes of the organic and inorganic sources via dual-source vapour evaporation and the heating process required to obtain high crystallization were avoided. Excellent composition with stoichiometry transferred from the powder material, a high level of tetragonal phase-purity, full surface coverage, well-defined grain structure, high crystallization and reproducibility were obtained. A PCE of approximately 10.90% was obtained with a device based on SSPVD CH3NH3PbI3. These initial results suggest that SSPVD is a promising method to significantly optimize perovskite CH3NH3PbI3 solar cell efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA