RESUMO
Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.
Assuntos
Cromatina/química , Genoma Humano , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Empacotamento do DNA , Humanos , RNA Polimerase II/metabolismo , Salamandridae , CoesinasRESUMO
BACKGROUND: Exhaustion is a key factor that influences the efficacy of chimeric antigen receptor T (CAR-T) cells. Our previous study demonstrated that a bromodomain protein 4 (BRD4) inhibitor can revise the phenotype and function of exhausted T cells from leukemia patients. This study aims to elucidate the mechanism by which a BRD4 inhibitor reduces CAR-T cell exhaustion using single-cell RNA sequencing (scRNA-Seq). METHODS: Exhausted CD123-specific CAR-T cells were prepared by co-culture with CD123 antigen-positive MV411 cells. After elimination of MV411 cells and upregulation of inhibitory receptors on the surface, exhausted CAR-T cells were treated with a BRD4 inhibitor (JQ1) for 72 h. The CAR-T cells were subsequently isolated, and scRNA-Seq was conducted to characterize phenotypic and functional changes in JQ1-treated cells. RESULTS: Both the proportion of exhausted CD8+ CAR-T cells and the exhausted score of CAR-T cells decreased in JQ1-treated compared with control-treated cells. Moreover, JQ1 treatment led to a higher proportion of naïve, memory, and progenitor exhausted CD8+ CAR-T cells as opposed to terminal exhausted CD8+ CAR-T cells accompanied by enhanced proliferation, differentiation, and activation capacities. Additionally, with JQ1 treatment, BATF activity and expression in naïve, memory, and progenitor exhausted CD8+ CAR-T cells decreased, whereas EGR1 activity and expression increased. Interestingly, AML patients with higher EGR1 and EGR1 target gene ssGSEA scores, coupled with lower BATF and BATF target gene ssGSEA scores, had the best prognosis. CONCLUSIONS: Our study reveals that a BRD4 inhibitor can reduce CAR-T cell exhaustion and block exhausted T cell terminal differentiation by downregulating BATF activity and expression together with upregulating EGR1 activity and expression, presenting an approach for improving the effectiveness of CAR-T cell therapy.
RESUMO
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
RESUMO
BACKGROUND: Quiescent self-renewal of leukemia stem cells (LSCs) and resistance to conventional chemotherapy are the main factors leading to relapse of acute myeloid leukemia (AML). Alpha-enolase (ENO1), a key glycolytic enzyme, has been shown to regulate embryonic stem cell differentiation and promote self-renewal and malignant phenotypes in various cancer stem cells. Here, we sought to test whether and how ENO1 influences LSCs renewal and chemoresistance within the context of AML. METHODS: We analyzed single-cell RNA sequencing data from bone marrow samples of 8 relapsed/refractory AML patients and 4 healthy controls using bioinformatics and machine learning algorithms. In addition, we compared ENO1 expression levels in the AML cohort with those in 37 control subjects and conducted survival analyses to correlate ENO1 expression with clinical outcomes. Furthermore, we performed functional studies involving ENO1 knockdown and inhibition in AML cell line. RESULTS: We used machine learning to model and infer malignant cells in AML, finding more primitive malignant cells in the non-response (NR) group. The differentiation capacity of LSCs and progenitor malignant cells exhibited an inverse correlation with glycolysis levels. Trajectory analysis indicated delayed myeloid cell differentiation in NR group, with high ENO1-expressing LSCs at the initial stages of differentiation being preserved post-treatment. Simultaneously, ENO1 and stemness-related genes were upregulated and co-expressed in malignant cells during early differentiation. ENO1 level in our AML cohort was significantly higher than the controls, with higher levels in NR compared to those in complete remission. Knockdown of ENO1 in AML cell line resulted in the activation of LSCs, promoting cell differentiation and apoptosis, and inhibited proliferation. ENO1 inhibitor can impede the proliferation of AML cells. Furthermore, survival analyses associated higher ENO1 expression with poorer outcome in AML patients. CONCLUSIONS: Our findings underscore the critical role of ENO1 as a plausible driver of LSC self-renewal, a potential target for AML target therapy and a biomarker for AML prognosis.
Assuntos
Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Fosfopiruvato Hidratase , Análise de Célula Única , Proteínas Supressoras de Tumor , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Feminino , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Masculino , Pessoa de Meia-Idade , Autorrenovação Celular , Adulto , Linhagem Celular Tumoral , Diferenciação Celular , Idoso , Biomarcadores TumoraisRESUMO
Tissue-resident memory T (TRM) cells infiltrating solid tumors could influence tumor progression and the response to immune therapies. However, the proportion and prognostic value of TRM cells in the bone marrow (BM) of patients with acute myeloid leukemia (AML) are unclear. In this study, we used flow cytometry to assay the phenotype of 49 BM samples from patients newly diagnosed with AML (ND-AML). We found that the BM CD8+ effector memory (TEM) cells highly expressed CD69 (CD8+ TRM-like T cells), and their percentage was significantly increased in patients with ND-AML compared with that in healthy individuals (HI). The high percentage of CD8+ TRM-like subset was associated with poor overall survival in our ND-AML cohort. The Kaplan-Meier Plotter database verified a significantly reduced survival rate among patients with high expression of CD8+ TRM-like T cell characteristic genes (CD8A, CD69, and TOX), especially the M4 and M5 subtypes. Phenotypic analysis revealed that the BM CD8+ TRM-like subpopulation exhibited exhausted T cell characteristics, but its high expression of CD27 and CD28 and low expression of CD57 suggested its high proliferative potential. The single-cell proteogenomic dataset confirmed the existence of TRM-like CD8+ T cells in the BM of patients with AML and verified the high expression of immune checkpoints and costimulatory molecules. In conclusion, we found that the accumulation of BM CD8+ TRM-like cells could be an immune-related survival prediction marker for patients with AML.
RESUMO
BACKGROUND: Meningioma is the most common primary intracranial tumor with a high frequency of postoperative recurrence, yet the biology of the meningioma malignancy process is still obscure. METHODS: To identify potential therapeutic targets and tumor suppressors, we performed single-cell transcriptome analysis through meningioma malignancy, which included 18 samples spanning normal meninges, benign and high-grade in situ tumors, and lung metastases, for extensive transcriptome characterization. Tumor suppressor candidate gene and molecular mechanism were functionally validated at the animal model and cellular levels. RESULTS: Comprehensive analysis and validation in mice and clinical cohorts indicated clusterin (CLU) had suppressive function for meningioma tumorigenesis and malignancy by inducing mitochondria damage and triggering type 1 interferon pathway dependent on its secreted isoform, and the inhibition effect was enhanced by TNFα as TNFα also induced type 1 interferon pathway. Meanwhile, both intra- and extracellular CLU overexpression enhanced macrophage polarization towards M1 phenotype and TNFα production, thus promoting tumor killing and phagocytosis. CONCLUSIONS: CLU might be a key brake of meningioma malignance by synchronously modulating tumor cells and their microenvironment. Our work provides comprehensive insights into meningioma malignancy and a potential therapeutic strategy.
Assuntos
Clusterina , Macrófagos , Neoplasias Meníngeas , Meningioma , Clusterina/metabolismo , Clusterina/genética , Meningioma/patologia , Meningioma/metabolismo , Animais , Humanos , Camundongos , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Carcinogênese/metabolismo , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Células Tumorais Cultivadas , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genéticaRESUMO
Leptomeningeal metastases (LMs) remain a devastating complication of non-small cell lung cancer (NSCLC), particularly following osimertinib resistance. We conducted single-cell RNA sequencing on cerebrospinal fluid (CSF) from EGFR-mutant NSCLC with central nervous system metastases. We found that macrophages of LMs displayed functional and phenotypic heterogeneity and enhanced immunosuppressive properties. A population of lipid-associated macrophages, namely RNASE1_M, were linked to osimertinib resistance and LM development, which was regulated by Midkine (MDK) from malignant epithelial cells. MDK exhibited significant elevation in both CSF and plasma among patients with LMs, with higher MDK levels correlating to poorer outcomes in an independent cohort. Moreover, MDK could promote macrophage M2 polarization with lipid metabolism and phagocytic function. Furthermore, malignant epithelial cells in CSF, particularly after resistance to osimertinib, potentially achieved immune evasion through CD47-SIRPA interactions with RNASE1_M. In conclusion, we revealed a specific subtype of macrophages linked to osimertinib resistance and LM development, providing a potential target to overcome LMs.
Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Macrófagos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Feminino , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/patologia , Carcinomatose Meníngea/secundário , Metabolismo dos Lipídeos/efeitos dos fármacos , Antígeno CD47/metabolismo , Antígeno CD47/genética , Masculino , Fagocitose/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Indóis , PirimidinasRESUMO
Hepatocellular carcinoma (HCC) remains a major cause of cancer-related mortality worldwide. Here we described a genome-wide screen by CRISPR activation (CRISPRa) library in vivo for drivers of HCC growth and metastasis. Pathological results showed the cell population formed highly metastatic tumors in lung after being mutagenized with CRISPRa. In vitro validation indicated overexpression of XAGE1B, PLK4, LMO1 and MYADML2 promoted cells proliferation and invasion, and the inhibition suppressed HCC progress. In addition, we reported high MYADML2 protein level exhibited worse overall survival in HCC, which increased significantly in patients over 60 years. Moreover, high MYADML2 reduced the sensitivity to chemotherapeutic drugs. Interestingly, immune cell infiltration analysis showed that the dendritic cells, macrophages, and so forth might play important role in HCC progress. In brief, we provides a roadmap for screening functional genes related to HCC invasion and metastasis in vivo, which may provide new potential targets for the treatment of HCC.
RESUMO
Background: Advanced non-small cell lung cancer (NSCLC) is the most common type of lung cancer with poor prognosis. Adoptive cell therapy using engineered T-cell receptors (TCRs) targeting cancer-testis antigens, such as Melanoma-associated antigen 3 (MAGE-A3), is a potential approach for the treatment of NSCLC. However, systematic analysis of T cell immune responses to MAGE-A3 antigen and corresponding antigen-specific TCR is still lacking. Methods: In this study, we comprehensively screened HLA-A2 restricted MAGE-A3 tumor epitopes and characterized the corresponding TCRs using in vitro artificial antigen presentation cells (APC) system, single-cell transcriptome and TCR V(D)J sequencing, and machine-learning. Furthermore, the tumor-reactive TCRs with killing potency was screened and verified. Results: We identified the HLA-A2 restricted T cell epitopes from MAGE-A3 that could effectively induce the activation and cytotoxicity of CD8+ T cells using artificial APC in vitro. A cohort of HLA-A2+ NSCLC donors demonstrated that the number of epitope specific CD8+ T cells increased in NSCLC than healthy controls when measured with tetramer derived from the candidate MAGE-A3 epitopes, especially epitope Mp4 (MAGE-A3: 160-169, LVFGIELMEV). Statistical and machine-learning based analyses demonstrated that the MAGE-A3-Mp4 epitope-specific CD8+ T cell clones were mostly in effector and proliferating state. Importantly, T cells artificially expressing the MAGE-A3-Mp4 specific TCRs exhibited strong MAGE-A3+ tumor cell recognition and killing effect. Cross-reactivity risk analysis of the candidates TCRs showed high binding stability to MAGE-A3-Mp4 epitope and low risk of cross-reaction. Conclusions: This work identified candidate TCRs potentially suitable for TCR-T design targeting HLA-A2 restricted MAGE-A3 tumor antigen.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Antígeno HLA-A2 , Epitopos , Receptores de Antígenos de Linfócitos T , Antígenos de NeoplasiasRESUMO
Ageing is often accompanied with a decline in immune system function, resulting in immune ageing. Numerous studies have focussed on the changes in different lymphocyte subsets in diseases and immunosenescence. The change in immune phenotype is a key indication of the diseased or healthy status. However, the changes in lymphocyte number and phenotype brought about by ageing have not been comprehensively analysed. Here, we analysed T and natural killer (NK) cell subsets, the phenotype and cell differentiation states in 43,096 healthy individuals, aged 20-88 years, without known diseases. Thirty-six immune parameters were analysed and the reference ranges of these subsets were established in different age groups divided into 5-year intervals. The data were subjected to random forest machine learning for immune-ageing modelling and confirmed using the neural network analysis. Our initial analysis and machine modelling prediction showed that naïve T cells decreased with ageing, whereas central memory T cells (Tcm) and effector memory T cells (Tem) increased cluster of differentiation (CD) 28-associated T cells. This is the largest study to investigate the correlation between age and immune cell function in a Chinese population, and provides insightful differences, suggesting that healthy adults might be considerably influenced by age and sex. The age of a person's immune system might be different from their chronological age. Our immune-ageing modelling study is one of the largest studies to provide insights into 'immune-age' rather than 'biological-age'. Through machine learning, we identified immune factors influencing the most through ageing and built a model for immune-ageing prediction. Our research not only reveals the impact of age on immune parameter differences within the Chinese population, but also provides new insights for monitoring and preventing some diseases in clinical practice. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00106-0.
RESUMO
Aging is a critical risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy. The immune responses to inactivated vaccine for older adults, and the underlying mechanisms of potential differences to young adults, are still unclear. Here we show that neutralizing antibody production by older adults took a longer time to reach similar levels in young adults after inactivated SARS-CoV-2 vaccination. We screened SARS-CoV-2 variant strains for epitopes that stimulate specific CD8 T cell response, and older adults exhibited weaker CD8 T-cell-mediated responses to these epitopes. Comparison of lymphocyte transcriptomes from pre-vaccinated and post-vaccinated donors suggested that the older adults had impaired antigen processing and presentation capability. Single-cell sequencing revealed that older adults had less T cell clone expansion specific to SARS-CoV-2, likely due to inadequate immune receptor repertoire size and diversity. Our study provides mechanistic insights for weaker response to inactivated vaccine by older adults and suggests the need for further vaccination optimization for the old population.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto Jovem , Humanos , Idoso , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Imunidade Celular , Células Clonais , Epitopos , Vacinas de Produtos InativadosRESUMO
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Assuntos
Senescência Celular , Biomarcadores/metabolismo , Transporte BiológicoRESUMO
Background: T-cell malignancies (TCMs), including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma (TCL), are highly aggressive and have a poor prognosis. To further understand prognostic stratifications and to design targeted therapies, this study aims to explore novel, potential biomarkers based on alterations in immune costimulatory molecules (CMs) for TCMs. Methods: Peripheral blood from 25 de novo T-ALL patients in our clinical center and transcriptome data from 131 to 162 patients with peripheral TCL (PTCL) from the GSE19069 and GSE58445 dataset, respectively, were obtained to assess the expression levels of CMs and their prognostic significance. Results: Seven CMs were associated with overall survival (OS). Among these CMs, CD5 and CD6 had the highest pairwise positive correlation (R = 0.69). CD5 and CD6 were significantly down-regulated in TCM patients compared with healthy individuals (HIs), and lower CD5 and CD6 expression was associated with poor OS for both T-ALL and TCL patients, particularly for patients greater than 60 years old. Furthermore, CD5 was positively correlated with CD6 in TCM patients. Compared with patients who were CD5highCD6high, T-ALL and TCL patients who were CD5lowCD6low had poor OS. Importantly, CD5highCD6high was an independent prognostic predictor for OS in T-ALL (HR = 0.39, 95% CI: 0.23-0.65, P < 0.001) and TCL (HR = 0.35, 95% CI: 0.19-0.62, P < 0.001) patients. Conclusions: Low expression of CD5 and CD6 was associated with poor OS for TCM patients, and this may be a potential immune biomarker panel for prognostic stratification of TCM patients.
RESUMO
Background: A major challenge in intervention of critical patients, especially sepsis-associated delirium (SAD) intervention, is the lack of predictive risk factors. As sepsis and SAD are heavily entangled with inflammatory and immunological processes, to identify the risk factors of SAD and mortality in the intensive care unit (ICU) and determine the underlying molecular mechanisms, the peripheral immune profiles of patients in the ICU were characterized. Methods: This study contains a cohort of 52 critical patients who were admitted to the ICU of the First Affiliated Hospital of Jinan University. Comorbidity, including sepsis and SAD, of this cohort was diagnosed and recorded. Furthermore, peripheral blood samples were collected on days 1, 3, and 5 of admission for peripheral immune profiling with blood routine examination, flow cytometry, ELISA, RNA-seq, and qPCR. Results: The patients with SAD had higher mortality during ICU admission and within 28 days of discharge. Compared with survivors, nonsurvivors had higher neutrophilic granulocyte percentage, higher CRP concentration, lower monocyte count, lower monocyte percentage, lower C3 complement level, higher CD14loCD16+ monocytes percentage, and higher levels of IL-6 and TNFα. The CD14hiCD16- monocyte percentage manifested favorable prediction values for the occurrence of SAD. Differentially expressed genes between the nonsurvival and survival groups were mainly associated with immune response and metabolism process. The longitudinal expression pattern of SLC2A1 and STIMATE were different between nonsurvivors and survivors, which were validated by qPCR. Conclusions: Nonsurvival critical patients have a distinct immune profile when compared with survival patients. CD14hiCD16- monocyte prevalence and expression levels of SLC2A1 and STIMATE may be predictors of SAD and 28-day mortality in ICU patients.
Assuntos
Encefalopatia Associada a Sepse , Sepse , Complemento C3 , Humanos , Unidades de Terapia Intensiva , Interleucina-6 , Fatores de Risco , Sepse/metabolismo , Fator de Necrose Tumoral alfaRESUMO
Introduction: The character and composition of leukemia-related T cells are closely related to the treatment response and prognosis for patients. Though B cell-acute lymphoblastic leukemia (B-ALL) patients have benefited from immune-based approaches, such as chimeric antigen receptor T cells therapy, some of them still end with poor prognosis, especially for adult patients. Therefore, deep understanding of the developmental relationship between T cell subtypes in relation to B-ALL patient prognosis is urgently needed. Methods: We analyzed the peripheral blood T cell single-cell RNA sequencing data of three B-ALL patients, using data from 11 healthy individuals as controls. In total, 16,143 and 53,701 T cells from B-ALL patients and healthy adults, respectively, were objectively analyzed for detailed delineation of 13 distinct T cell clusters. Cluster-specific genes were used as marker genes to annotate each T cell subtype. Results: Unbiased analysis enabled the discovery of circulating CD103+ T cell (CD3+CD103+MKI67+), also defined as tissue-resident memory-like T (Trm-like) cell, populations were elevated in B-ALL patients, which expressed high level of cell proliferation and exhaustion related genes. In addition, cell fate trajectory analysis showed these Trm-like cells, which shared T-cell receptor (TCR) clonotypes with exhausted T (Tex) cells and effector T (Teff) cells, were supposed to transition into Teff cells; however, mainly transformed into Tex cells in leukemia environment. More importantly, Trm-like cells transformation into Teff cells and Tex cells potentially led to favorable or poor prognosis for B-ALL patients, respectively. Conclusion: In sum, a circulating Trm-like cell subset with high level expression of cell proliferation and exhaustion related genes was elevated in B-ALL patients. The bidirectional developmental potential of these T cells into Teff or Tex is closely associated with favorable or poor prognosis, respectively. Together, our study provided a unique insight of alteration of leukemia related T cells, also showed a potential immunotherapy direction and prognosis assessment model for B-ALL patients.
Assuntos
Memória Imunológica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Subpopulações de Linfócitos T , Prognóstico , ImunoterapiaRESUMO
Here, we evaluated the immune properties of the HLA-A2 restricted CD8+ T cell epitopes containing mutations from B.1.1.7, and furthermore performed a comprehensive analysis of the SARS-CoV-2 specific CD8+ T cell responses from COVID-19 convalescent patients and SARS-CoV-2 vaccinees recognizing the ancestral Wuhan strain compared to B.1.1.7. First, most of the predicted CD8+ T cell epitopes showed proper binding with HLA-A2, whereas epitopes from B.1.1.7 had lower binding capability than those from the ancestral strain. In addition, these peptides could effectively induce the activation and cytotoxicity of CD8+ T cells. Our results further showed that at least two site mutations in B.1.1.7 resulted in a decrease in CD8+ T cell activation and a possible immune evasion, namely A1708D mutation in ORF1ab1707-1716 and I2230T mutation in ORF1ab2230-2238. Our current analysis provides information that contributes to the understanding of SARS-CoV-2-specific CD8+ T cell responses elicited by infection of mutated strains or vaccination.
RESUMO
Frailty is an intermediate status of the human aging process, associated with decompensated homeostasis and death. The immune phenotype of frailty and its underlying cellular and molecular processes remain poorly understood. We profiled 114,467 immune cells from cord blood, young adults and healthy and frail old adults using single-cell RNA and TCR sequencing. Here we show an age-dependent accumulation of transcriptome heterogeneity and variability in immune cells. Characteristic transcription factors were identified in given cell types of specific age groups. Trajectory analysis revealed cells from non-frail and frail old adults often fall into distinct paths. Numerous TCR clonotypes were shared among T-cell subtypes in old adults, indicating differential pluripotency and resilience capabilities of aged T cells. A frailty-specific monocyte subset was identified with exclusively high expression of long noncoding RNAs NEAT1 and MALAT1. Our study discovers human frailty-specific immune cell characteristics based on the comprehensive dimensions in the immune landscape of aging and frailty.
Assuntos
Fragilidade , Idoso , Adulto Jovem , Humanos , Idoso Fragilizado , Envelhecimento , Sistema Imunitário , Receptores de Antígenos de Linfócitos TRESUMO
Here, we describe the use of the artificial antigen-presenting cell (aAPC) system for the verification of T-cell epitopes. We purify and activate CD8+ T cells from blood samples from HLA-A2 that are negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CD8+ T cells are combined with peptide-loaded T2-A2 cells, which are then stained with a SARS-CoV-2-specific MHC-1 tetramer to identify specific HLA-A2-restricted T-cell epitopes. The use of aAPC and healthy donors means that only BSL2 lab conditions are needed. For details of the use and implementation of this protocol, please refer to Deng et al. (2021).
Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Humanos , Ativação LinfocitáriaRESUMO
The outbreak of coronavirus disease 2019 (COVID-19) has now become a pandemic, and the etiologic agent is the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). T cell mediated immune responses play an important role in virus controlling; however, the understanding of the viral protein immunogenicity and the mechanisms of the induced responses are still limited. So, identification of specific epitopes and exploring their immunogenic properties would provide valuable information. In our study, we utilized the Immune Epitope Database and Analysis Resource and NetMHCpan to predict HLA-A2 restricted CD8+ T cell epitopes in structural proteins of SARS-CoV-2, and screened out 23 potential epitopes. Among them, 18 peptides showed strong or moderate binding with HLA-A2 with a T2A2 cell binding model. Next, the mixed peptides induced the increased expression of CD69 and highly expressed levels of IFN-γ and granzyme B in CD8+ T cells, indicating effective activation of specific CD8+ T cells. In addition, the peptide-activated CD8+ T cells showed significantly increased killing to the target cells. Furthermore, tetramer staining revealed that the activated CD8+ T cells mainly recognized seven epitopes. All together, we identified specific CD8+ T cell epitopes in SARS-CoV-2 structural proteins, which could induce the production of specific immune competent CD8+ T cells. Our work contributes to the understanding of specific immune responses and vaccine development for SARS-CoV-2.
Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , SARS-CoV-2/imunologia , Proteínas Estruturais Virais/imunologia , Adulto , Feminino , Humanos , Ativação Linfocitária/imunologia , MasculinoRESUMO
Human immune system functions over an entire lifetime, yet how and why the immune system becomes less effective with age are not well understood. Here, we characterize peripheral blood mononuclear cell transcriptome from 132 healthy adults with 21-90 years of age using the weighted gene correlation network analyses. In our study, 113 Caucasian from the 10KIP database and RNA-seq data of 19 Asian (Chinese) are used to explore the differential co-expression genes in PBMC aging. These two dataset reveal a set of insightful gene expression modules and representative gene biomarkers for human immune system aging from Asian and Caucasian ancestry, respectively. Among them, the aging-specific modules may show an age-related gene expression variation spike around early-seventies. In addition, we find the top hub genes including NUDT7, CLPB, OXNAD1, and MLLT3 are shared between Asian and Caucasian aging related modules and further validated in human PBMCs from different age groups. Overall, the impact of age and race on transcriptional variation elucidated from this study may provide insights into the transcriptional driver of immune aging.