Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067842

RESUMO

Visual simultaneous localization and mapping is a widely used technology for mobile robots to carry out precise positioning in the environment of GNSS technology failure. However, as the robot moves around indoors, its position accuracy will gradually decrease over time due to common and unavoidable environmental factors. In this paper, we propose an improved method called RTABMAP-VIWO, which is based on RTABMAP. The basic idea is to use an Extended Kalman Filter (EKF) framework for fusion attitude estimates from the wheel odometry and IMU, and provide new prediction values. This helps to reduce the local cumulative error of RTABMAP and make it more accurate. We compare and evaluate three kinds of SLAM methods using both public datasets and real indoor scenes. In the dataset experiments, our proposed method reduces the Root-Mean-Square Error (RMSE) coefficient by 48.1% compared to the RTABMAP, and the coefficient is also reduced by at least 29.4% in the real environment experiments. The results demonstrate that the improved method is feasible. By incorporating the IMU into the RTABMAP method, the trajectory and posture errors of the mobile robot are significantly improved.

2.
Sensors (Basel) ; 23(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299841

RESUMO

Aiming at the problems of low detection efficiency and poor detection accuracy caused by texture feature interference and dramatic changes in the scale of defect on steel surfaces, an improved YOLOv5s model is proposed. In this study, we propose a novel re-parameterized large kernel C3 module, which enables the model to obtain a larger effective receptive field and improve the ability of feature extraction under complex texture interference. Moreover, we construct a feature fusion structure with a multi-path spatial pyramid pooling module to adapt to the scale variation of steel surface defects. Finally, we propose a training strategy that applies different kernel sizes for feature maps of different scales so that the receptive field of the model can adapt to the scale changes of the feature maps to the greatest extent. The experiment on the NEU-DET dataset shows that our model improved the detection accuracy of crazing and rolled in-scale, which contain a large number of weak texture features and are densely distributed by 14.4% and 11.1%, respectively. Additionally, the detection accuracy of inclusion and scratched defects with prominent scale changes and significant shape features was improved by 10.5% and 6.6%, respectively. Meanwhile, the mean average precision value reaches 76.8%, compared with the YOLOv5s and YOLOv8s, which increased by 8.6% and 3.7%, respectively.

3.
Sensors (Basel) ; 22(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746283

RESUMO

The working environment of rotating machines is complex, and their key components are prone to failure. The early fault diagnosis of rolling bearings is of great significance; however, extracting the single scale fault feature of the early weak fault of rolling bearings is not enough to fully characterize the fault feature information of a weak signal. Therefore, aiming at the problem that the early fault feature information of rolling bearings in a complex environment is weak and the important parameters of Variational Modal Decomposition (VMD) depend on engineering experience, a fault feature extraction method based on the combination of Adaptive Variational Modal Decomposition (AVMD) and optimized Multiscale Fuzzy Entropy (MFE) is proposed in this study. Firstly, the correlation coefficient is used to calculate the correlation between the modal components decomposed by VMD and the original signal, and the threshold of the correlation coefficient is set to optimize the selection of the modal number K. Secondly, taking Skewness (Ske) as the objective function, the parameters of MFE embedding dimension M, scale factor S and time delay T are optimized by the Particle Swarm Optimization (PSO) algorithm. Using optimized MFE to calculate the modal components obtained by AVMD, the MFE feature vector of each frequency band is obtained, and the MFE feature set is constructed. Finally, the simulation signals are used to verify the effectiveness of the Adaptive Variational Modal Decomposition, and the Drivetrain Dynamics Simulator (DDS) are used to complete the comparison test between the proposed method and the traditional method. The experimental results show that this method can effectively extract the fault features of rolling bearings in multiple frequency bands, characterize more weak fault information, and has higher fault diagnosis accuracy.

4.
Sci Rep ; 13(1): 20803, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012224

RESUMO

During the production of metal material, various complex defects may come into being on the surface, together with large amount of background texture information, causing false or missing detection in the process of small defect detection. To resolve those problems, this paper introduces a new model which combines the advantages of CSPlayer module and Global Attention Enhancement Mechanism based on the YOLOv5s model. First of all, we replace C3 module with CSPlayer module to augment the neural network model, so as to improve its flexibility and adaptability. Then, we introduce the Global Attention Mechanism (GAM) and build the generalized additive model. In the meanwhile, the attention weights of all dimensions are weighted and averaged as output to promote the detection speed and accuracy. The results of the experiment in which the GC10-DET augmented dataset is involved, show that the improved algorithm model performs better than YOLOv5s in precision, mAP@0.5 and mAP@0.5: 0.95 by 5.3%, 1.4% and 1.7% respectively, and it also has a higher reasoning speed.

5.
Sci Rep ; 13(1): 9805, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328545

RESUMO

To solve the problem of missed and false detection caused by the large number of tiny targets and complex background textures in a printed circuit board (PCB), we propose a global contextual attention augmented YOLO model with ConvMixer prediction heads (GCC-YOLO). In this study, we apply a high-resolution feature layer (P2) to gain more details and positional information of small targets. Moreover, in order to suppress the background noisy information and further enhance the feature extraction capability, a global contextual attention module (GC) is introduced in the backbone network and combined with a C3 module. Furthermore, in order to reduce the loss of shallow feature information due to the deepening of network layers, a bi-directional weighted feature pyramid (BiFPN) feature fusion structure is introduced. Finally, a ConvMixer module is introduced and combined with the C3 module to create a new prediction head, which improves the small target detection capability of the model while reducing the parameters. Test results on the PCB dataset show that GCC-YOLO improved the Precision, Recall, mAP@0.5, and mAP@0.5:0.95 by 0.2%, 1.8%, 0.5%, and 8.3%, respectively, compared to YOLOv5s; moreover, it has a smaller model volume and faster reasoning speed compared to other algorithms.


Assuntos
Algoritmos , Rememoração Mental , Resolução de Problemas , Tratos Piramidais , Registros
6.
AMB Express ; 9(1): 70, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127400

RESUMO

Gene therapy and viral vaccine are becoming attractive therapeutic options for the treatment of different malignant diseases. Viral vector productions are often using static culture vessels and small volume stainless steel bioreactors (SSB). However, the yield of each vessel can be relatively low and multiple vessels often need to be operated simultaneously. This significantly increases labor intensity, production costs, contamination risks, and limits its ability to be scaled up, thus, creating challenges to meet the quantities required once the gene therapy or viral vaccine medicine goes into clinical phases or to market. Single-use bioreactor combining with microcarrier provides a good option for viral vector and vaccine production. The goal of the present studies was to develop the microcarrier bead-to-bead expansion and transfer process for HEK293T cells and Vero cells and scale-up the cultures to 50-200 l single-use bioreactors. Following microcarrier bead-to-bead transfer, the peak cell concentration of HEK293T cells reached 1.5 × 106 cells/ml in XDR-50 bioreactor, whereas Vero cells reached 3.1 × 106 cells/ml and 3.3 × 106 cells/ml in XDR-50 bioreactor and XDR-200 bioreactor, respectively. The average growth rates reached 0.61-0.68/day. The successful microcarrier-based scaleup of these two cell lines in single-use bioreactors demonstrates potential large-scale production capabilities of viral vaccine and vector for current and future vaccines and gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA