Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lancet ; 403(10444): 2606-2618, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823406

RESUMO

BACKGROUND: Coronary computed tomography angiography (CCTA) is the first line investigation for chest pain, and it is used to guide revascularisation. However, the widespread adoption of CCTA has revealed a large group of individuals without obstructive coronary artery disease (CAD), with unclear prognosis and management. Measurement of coronary inflammation from CCTA using the perivascular fat attenuation index (FAI) Score could enable cardiovascular risk prediction and guide the management of individuals without obstructive CAD. The Oxford Risk Factors And Non-invasive imaging (ORFAN) study aimed to evaluate the risk profile and event rates among patients undergoing CCTA as part of routine clinical care in the UK National Health Service (NHS); to test the hypothesis that coronary arterial inflammation drives cardiac mortality or major adverse cardiac events (MACE) in patients with or without CAD; and to externally validate the performance of the previously trained artificial intelligence (AI)-Risk prognostic algorithm and the related AI-Risk classification system in a UK population. METHODS: This multicentre, longitudinal cohort study included 40 091 consecutive patients undergoing clinically indicated CCTA in eight UK hospitals, who were followed up for MACE (ie, myocardial infarction, new onset heart failure, or cardiac death) for a median of 2·7 years (IQR 1·4-5·3). The prognostic value of FAI Score in the presence and absence of obstructive CAD was evaluated in 3393 consecutive patients from the two hospitals with the longest follow-up (7·7 years [6·4-9·1]). An AI-enhanced cardiac risk prediction algorithm, which integrates FAI Score, coronary plaque metrics, and clinical risk factors, was then evaluated in this population. FINDINGS: In the 2·7 year median follow-up period, patients without obstructive CAD (32 533 [81·1%] of 40 091) accounted for 2857 (66·3%) of the 4307 total MACE and 1118 (63·7%) of the 1754 total cardiac deaths in the whole of Cohort A. Increased FAI Score in all the three coronary arteries had an additive impact on the risk for cardiac mortality (hazard ratio [HR] 29·8 [95% CI 13·9-63·9], p<0·001) or MACE (12·6 [8·5-18·6], p<0·001) comparing three vessels with an FAI Score in the top versus bottom quartile for each artery. FAI Score in any coronary artery predicted cardiac mortality and MACE independently from cardiovascular risk factors and the presence or extent of CAD. The AI-Risk classification was positively associated with cardiac mortality (6·75 [5·17-8·82], p<0·001, for very high risk vs low or medium risk) and MACE (4·68 [3·93-5·57], p<0·001 for very high risk vs low or medium risk). Finally, the AI-Risk model was well calibrated against true events. INTERPRETATION: The FAI Score captures inflammatory risk beyond the current clinical risk stratification and CCTA interpretation, particularly among patients without obstructive CAD. The AI-Risk integrates this information in a prognostic algorithm, which could be used as an alternative to traditional risk factor-based risk calculators. FUNDING: British Heart Foundation, NHS-AI award, Innovate UK, National Institute for Health and Care Research, and the Oxford Biomedical Research Centre.


Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Longitudinais , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Angiografia Coronária/métodos , Reino Unido/epidemiologia , Medição de Risco/métodos , Fatores de Risco , Inflamação , Prognóstico , Infarto do Miocárdio/epidemiologia
2.
Eur Heart J ; 40(43): 3529-3543, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31504423

RESUMO

BACKGROUND: Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. METHODS AND RESULTS: We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62-0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. CONCLUSION: The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Doença da Artéria Coronariana/diagnóstico por imagem , Perfilação da Expressão Gênica/métodos , Aprendizado de Máquina , Placa Aterosclerótica/diagnóstico por imagem , Transcriptoma , Tecido Adiposo/patologia , Idoso , Algoritmos , Estudos de Casos e Controles , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Feminino , Seguimentos , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Medição de Risco
3.
Eur J Nucl Med Mol Imaging ; 46(10): 2023-2031, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286201

RESUMO

INTRODUCTION: To investigate the combined performance of quantitative CT (qCT) following a computer algorithm analysis (IMBIO) and 18F-FDG PET/CT to assess survival in patients with idiopathic pulmonary fibrosis (IPF). METHODS: A total of 113 IPF patients (age 70 ± 9 years) prospectively and consecutively underwent 18F-FDG PET/CT and high-resolution CT (HRCT) at our institution. During a mean follow-up of 29.6 ± 26 months, 44 (48%) patients died. As part of the qCT analysis, pattern evaluation of HRCT (using IMBIO software) included the total extent (percentage) of the following features: normal-appearing lung, hyperlucent lung, parenchymal damage (comprising ground-glass opacification, reticular pattern and honeycombing), and the pulmonary vessels. The maximum (SUVmax) and minimum (SUVmin) standardized uptake value (SUV) for 18F-FDG uptake in the lungs, and the target-to-background (SUVmax/SUVmin) ratio (TBR) were quantified using routine region-of-interest (ROI) analysis. Pulmonary functional tests (PFTs) were acquired within 14 days of the PET/CT/HRCT scan. Kaplan-Meier (KM) survival analysis was used to identify associations with mortality. RESULTS: Data from 91 patients were available for comparative analysis. The average ± SD GAP [gender, age, physiology] score was 4.2 ± 1.7 (range 0-8). The average ± SD SUVmax, SUVmin, and TBR were 3.4 ± 1.4, 0.7 ± 0.2, and 5.6 ± 2.8, respectively. In all patients, qCT analysis demonstrated a predominantly reticular lung pattern (14.9 ± 12.4%). KM analysis showed that TBR (p = 0.018) and parenchymal damage assessed by qCT (p = 0.0002) were the best predictors of survival. Adding TBR and qCT to the GAP score significantly increased the ability to differentiate between high and low risk (p < 0.0001). CONCLUSION: 18F-FDG PET and qCT are independent and synergistic in predicting mortality in patients with IPF.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fibrose Pulmonar/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Valor Preditivo dos Testes , Fibrose Pulmonar/diagnóstico , Compostos Radiofarmacêuticos , Análise de Sobrevida
4.
JACC Cardiovasc Imaging ; 16(6): 800-816, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36881425

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) volume is a marker of visceral obesity that can be measured in coronary computed tomography angiograms (CCTA). The clinical value of integrating this measurement in routine CCTA interpretation has not been documented. OBJECTIVES: This study sought to develop a deep-learning network for automated quantification of EAT volume from CCTA, test it in patients who are technically challenging, and validate its prognostic value in routine clinical care. METHODS: The deep-learning network was trained and validated to autosegment EAT volume in 3,720 CCTA scans from the ORFAN (Oxford Risk Factors and Noninvasive Imaging Study) cohort. The model was tested in patients with challenging anatomy and scan artifacts and applied to a longitudinal cohort of 253 patients post-cardiac surgery and 1,558 patients from the SCOT-HEART (Scottish Computed Tomography of the Heart) Trial, to investigate its prognostic value. RESULTS: External validation of the deep-learning network yielded a concordance correlation coefficient of 0.970 for machine vs human. EAT volume was associated with coronary artery disease (odds ratio [OR] per SD increase in EAT volume: 1.13 [95% CI: 1.04-1.30]; P = 0.01), and atrial fibrillation (OR: 1.25 [95% CI: 1.08-1.40]; P = 0.03), after correction for risk factors (including body mass index). EAT volume predicted all-cause mortality (HR per SD: 1.28 [95% CI: 1.10-1.37]; P = 0.02), myocardial infarction (HR: 1.26 [95% CI:1.09-1.38]; P = 0.001), and stroke (HR: 1.20 [95% CI: 1.09-1.38]; P = 0.02) independently of risk factors in SCOT-HEART (5-year follow-up). It also predicted in-hospital (HR: 2.67 [95% CI: 1.26-3.73]; P ≤ 0.01) and long-term post-cardiac surgery atrial fibrillation (7-year follow-up; HR: 2.14 [95% CI: 1.19-2.97]; P ≤ 0.01). CONCLUSIONS: Automated assessment of EAT volume is possible in CCTA, including in patients who are technically challenging; it forms a powerful marker of metabolically unhealthy visceral obesity, which could be used for cardiovascular risk stratification.


Assuntos
Fibrilação Atrial , Doenças Cardiovasculares , Doença da Artéria Coronariana , Aprendizado Profundo , Humanos , Obesidade Abdominal , Fatores de Risco , Valor Preditivo dos Testes , Doença da Artéria Coronariana/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Pericárdio/diagnóstico por imagem , Fatores de Risco de Doenças Cardíacas , Tecido Adiposo/diagnóstico por imagem , Medição de Risco
5.
Diagnostics (Basel) ; 12(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36140526

RESUMO

Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases, have promoted this rapid development. This narrative review of the current state-of-the-art aimed to survey current applications of AI in predicting survival in patients with brain tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to survival assessment: the first on the classification of subjects into survival classes (short and long-term or eventually short, mid and long-term) to stratify patients in distinct groups. The second focused on quantification, in days or months, of the individual survival interval. Our survey showed excellent state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the most challenging, but state-of-the-art techniques showed promising results, albeit with limitations, with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational methods perform differently, and the choice of the best one to use is non-univocal and dependent on many aspects. Unequivocally, the use of features derived from quantitative imaging has been shown to be advantageous for AI applications, including survival prediction. This evidence from the literature motivates further research in the field of AI-powered methods for survival prediction in patients with brain tumors, in particular, using the wealth of information provided by quantitative MRI techniques.

6.
Br J Radiol ; 95(1134): 20210957, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35191759

RESUMO

OBJECTIVE: To assess the prognostic performance of two quantitative CT (qCT) techniques in idiopathic pulmonary fibrosis (IPF) compared to established clinical measures of disease severity (GAP index). METHODS: Retrospective analysis of high-resolution CT scans for 59 patients (age 70.5 ± 8.8 years) with two qCT methods. Computer-aided lung informatics for pathology evaluation and ratings based analysis classified the lung parenchyma into six different patterns: normal, ground glass, reticulation, hyperlucent, honeycombing and pulmonary vessels. Filtration histogram-based texture analysis extracted texture features: mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPPs), skewness and kurtosis at different spatial scale filters. Univariate Kaplan-Meier survival analysis assessed the different qCT parameters' performance to predict patient outcome and refine the standard GAP staging system. Multivariate cox regression analysis assessed the independence of the significant univariate predictors of patient outcome. RESULTS: The predominant parenchymal lung pattern was reticulation (16.6% ± 13.9), with pulmonary vessel percentage being the most predictive of worse patient outcome (p = 0.009). Higher SD, entropy and MPP, in addition to lower skewness and kurtosis at fine texture scale (SSF2), were the most significant predictors of worse outcome (p < 0.001). Multivariate cox regression analysis demonstrated that SD (SSF2) was the only independent predictor of survival (p < 0.001). Better patient outcome prediction was achieved after adding total vessel percentage and SD (SSF2) to the GAP staging system (p = 0.006). CONCLUSION: Filtration-histogram texture analysis can be an independent predictor of patient mortality in IPF patients. ADVANCES IN KNOWLEDGE: qCT analysis can help in risk stratifying IPF patients in addition to clinical markers.


Assuntos
Fibrose Pulmonar Idiopática , Idoso , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
7.
Lancet Digit Health ; 4(10): e705-e716, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038496

RESUMO

BACKGROUND: Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19. METHODS: For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes. FINDINGS: Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2·97 [95% CI 1·43-6·27], p=0·0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1·89 [95% CI 1·17-3·20] per SD, p=0·012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [≥6·99] vs low [<6·99] C19-RS; hazard ratio [HR] 3·31 [95% CI 1·49-7·33], p=0·0033; and 2·58 [1·10-6·05], p=0·028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8·24 (95% CI 2·16-31·36, p=0·0019) in patients who received no dexamethasone treatment, but 2·27 (0·69-7·55, p=0·18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0·61, p=0·00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways. INTERPRETATION: Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. FUNDING: Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.


Assuntos
COVID-19 , SARS-CoV-2 , Angiografia , Inteligência Artificial , COVID-19/diagnóstico por imagem , Citocinas , Humanos , Inflamação/diagnóstico por imagem , Estudos Prospectivos , Medicina Estatal , Tomografia Computadorizada por Raios X
8.
Nucl Med Commun ; 41(6): 517-525, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32282634

RESUMO

PURPOSE: To determine the utility of F-fluoro-L-3,4-dihydroxy-phenylalanine (F-DOPA) PET/MRI versus cross-sectional MRI alone in glioma response assessment and identify whether the two techniques demonstrate different tumour features. METHODS: F-DOPA PET/MRI studies from 40 patients were analysed. Quantitative PET parameters and conventional MRI features were recorded. Tumour volume was assessed on both PET and MRI. Using dynamic susceptibility contrast perfusion-weighted imaging, maps of cerebral blood flow (CBF) and cerebral blood volume (CBV) were obtained. Within volume of tumours of tumour features and normal-appearing white matter (NAWM) drawn on MRI, standardised uptake value (SUV)max, CBF and CBV were recorded. Presence of residual active tumour was assessed by qualitative visual assessment. Receiver operating characteristic analysis was performed univariately and on parameter combination to analyse ability to determine presence/absence of disease. Reference standard for presence of viable tissue was biopsy or clinical follow-up. RESULTS: Median SUVmax was 3.4 for low-grade glioma (LGG) and 3.3 for high-grade glioma (HGG). There was a significant correlation between PWI parameters and WHO grade (P < 0.001), but no correlation with SUVmax. Median F-DOPA volume was 8216.88 mm for HGG and 6284.94 mm for LGG; MRI volume was 6316.57 mm and 5931.55 mm, respectively. SUVmax analysis distinguished enhancing and nonenhancing components from necrosis and NAWM and demonstrated active disease in nonenhancing regions. Visually, the modalities were concordant in 37 patients. Combining the multiparametric PET/MRI approach with all available data-enhanced detection of the presence of tumour (area under the curve 0.99, P < 0.01). CONCLUSION: MRI and F-DOPA are complementary modalities for assessment of tumour burden. Matching F-DOPA and MRI in assessing residual tumour volume may better delineate the radiotherapy target volume.


Assuntos
Glioma/diagnóstico por imagem , Glioma/terapia , Levodopa/química , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Criança , Feminino , Radioisótopos de Flúor/química , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , Carga Tumoral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA