Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188736

RESUMO

Hepatitis B virus (HBV) chronically infects approximately 350 million people worldwide, and 600,000 deaths are caused by HBV-related hepatic failure, liver cirrhosis, and hepatocellular carcinoma annually. It is important to reveal the mechanism underlying the regulation of HBV replication. This study demonstrated that osteopetrosis-associated transmembrane protein 1 (Ostm1) plays an inhibitory role in HBV replication. Ostm1 represses the levels of HBeAg and HBsAg proteins, HBV 3.5-kb and 2.4/2.1-kb RNAs, and core-associated DNA in HepG2, Huh7, and NTCP-HepG2 cells. Notably, Ostm1 has no direct effect on the activity of HBV promoters or the transcription of HBV RNAs; instead, Ostm1 binds to HBV RNA to facilitate RNA decay. Detailed studies further demonstrated that Ostm1 binds to and recruits the RNA exosome complex to promote the degradation of HBV RNAs, and knockdown of the RNA exosome component exonuclease 3 (Exosc3) leads to the elimination of Ostm1-mediated repression of HBV replication. Mutant analyses revealed that the N-terminal domain, the transmembrane domain, and the C-terminal domain are responsible for the repression of HBV replication, and the C-terminal domain is required for interaction with the RNA exosome complex. Moreover, Ostm1 production is not regulated by interferon-α (IFN-α) or IFN-γ, and the expression of IFN signaling components is not affected by Ostm1, suggesting that Ostm1 anti-HBV activity is independent of the IFN signaling pathway. In conclusion, this study revealed a distinct mechanism underlying the repression of HBV replication, in which Ostm1 binds to HBV RNA and recruits RNA exosomes to degrade viral RNA, thereby restricting HBV replication.IMPORTANCE Hepatitis B virus (HBV) is a human pathogen infecting the liver to cause a variety of diseases ranging from acute hepatitis to advanced liver diseases, fulminate hepatitis, liver cirrhosis, and hepatocellular carcinoma, thereby causing a major health problem worldwide. In this study, we demonstrated that Ostm1 plays an inhibitory role in HBV protein production, RNA expression, and DNA replication. However, Ostm1 has no effect on the activities of the four HBV promoters; instead, it binds to HBV RNA and recruits RNA exosomes to promote HBV RNA degradation. We further demonstrated that the anti-HBV activity of Ostm1 is independent of the interferon signaling pathway. In conclusion, this study reveals a distinct mechanism underlying the repression of HBV replication and suggests that Ostm1 is a potential therapeutic agent for HBV infection.


Assuntos
Exossomos/metabolismo , Vírus da Hepatite B/fisiologia , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Células Hep G2 , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Proteínas de Membrana/genética , Domínios Proteicos , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30674631

RESUMO

Hepatitis B virus (HBV) infection is the leading cause of chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). This study reveals a distinct mechanism underlying the regulation of HBV replication. HBV activates homeobox A10 (HoxA10) in human hepatocytes, leukocytes, peripheral blood mononuclear cells (PBMCs), HepG2-NTCP cells, leukocytes isolated from CHB patients, and HBV-associated HCC tissues. HoxA10 in turn represses HBV replication in human hepatocytes, HepG2-NTCP cells, and BALB/c mice. Interestingly, we show that during early HBV infection, p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) were activated to facilitate HBV replication; however, during late HBV infection, HoxA10 was induced to attenuate HBV replication. Detailed studies reveal that HoxA10 binds to p38 MAPK, recruits SH2-containing protein tyrosine phosphatase 1 (SHP-1) to facilitate SHP-1 in catalyzing dephosphorylation of p38 MAPK/STAT3, and thereby attenuates p38 MAPK/STAT3 activation and HBV replication. Furthermore, HoxA10 binds to the HBV enhancer element I (EnhI)/X promoter, competes with STAT3 for binding of the promoter, and thereby represses HBV transcription. Taken together, these results show that HoxA10 attenuates HBV replication through repressing the p38 MAPK/STAT3 pathway by two approaches: HoxA10 interacts with p38 MAPK and recruits SHP-1 to repress HBV replication, and HoxA10 binds to the EnhI/X promoter and competes with STAT3 to attenuate HBV transcription. Thus, the function of HoxA10 is similar to the action of interferon (IFN) in terms of inhibition of HBV infection; however, the mechanism of HoxA10-mediated repression of HBV replication is different from the mechanism underlying IFN-induced inhibition of HBV infection.IMPORTANCE Two billion people have been infected with HBV worldwide; about 240 million infected patients developed chronic hepatitis B (CHB), and 650,000 die each year from liver cirrhosis (LC) or hepatocellular carcinoma (HCC). This work elucidates a mechanism underlying the control of HBV replication. HBV infection activates HoxA10, a regulator of cell differentiation and cancer progression, in human cells and patients with CHB and HCC. HoxA10 subsequently inhibits HBV replication in human tissue culture cells and mice. Additionally, HoxA10 interacts with p38 MAPK to repress the activation of p38 MAPK and STAT3 and recruits and facilitates SHP-1 to catalyze the dephosphorylation of p38 MAPK and STAT3. Moreover, HoxA10 competes with STAT3 for binding of the HBV X promoter to repress HBV transcription. Thus, this work reveals a negative regulatory mechanism underlying the control of HBV replication and provides new insights into the development of potential agents to control HBV infection.


Assuntos
Vírus da Hepatite B/genética , Hepatite B Crônica/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT3/metabolismo , Replicação Viral/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Estudos de Casos e Controles , Linhagem Celular , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Células Hep G2 , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Proteínas Homeobox A10 , Humanos , Interferons/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
3.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185588

RESUMO

Viral and episomal DNAs, as signs of infections and dangers, induce a series of immune responses in the host, and cells must sense foreign DNAs to eliminate the invaders. The cell nucleus is not "immune privileged" and exerts intrinsic mechanisms to control nuclear-replicating DNA viruses. Thus, it is important to understand the action of viral DNA sensing in the cell nucleus. Here, we reveal a mechanism of restriction of DNA viruses and episomal plasmids mediated by PJA1, a RING-H2 E3 ubiquitin ligase. PJA1 restricts the DNA viruses hepatitis B virus (HBV) and herpes simplex virus 1 (HSV-1) but not the RNA viruses enterovirus 71 (EV71) and vesicular stomatitis virus (VSV). Similarly, PJA1 inhibits episomal plasmids but not chromosome-integrated reporters or endogenous genes. In addition, PJA1 has no effect on endogenous type I and II interferons (IFNs) and interferon-stimulated genes (ISGs), suggesting that PJA1 silences DNA viruses independent of the IFN pathways. Interestingly, PJA1 interacts with the SMC5/6 complex (a complex essential for chromosome maintenance and HBV restriction) to facilitate the binding of the complex to viral and episomal DNAs in the cell nucleus. Moreover, treatment with inhibitors of DNA topoisomerases (Tops) and knockdown of Tops release PJA1-mediated silencing of viral and extrachromosomal DNAs. Taken together, results of this work demonstrate that PJA1 interacts with SMC5/6 and facilitates the complex to bind and eliminate viral and episomal DNAs through DNA Tops and thus reveal a distinct mechanism underlying restriction of DNA viruses and foreign genes in the cell nucleus.IMPORTANCE DNA viruses, including hepatitis B virus and herpes simplex virus, induce a series of immune responses in the host and lead to human public health concerns worldwide. In addition to cytokines in the cytoplasm, restriction of viral DNA in the nucleus is an important approach of host immunity. However, the mechanism of foreign DNA recognition and restriction in the cell nucleus is largely unknown. This work demonstrates that an important cellular factor (PJA1) suppresses DNA viruses and transfected plasmids independent of type I and II interferon (IFN) pathways. Instead, PJA1 interacts with the chromosome maintenance complex (SMC5/6), facilitates the complex to recognize and bind viral and episomal DNAs, and recruits DNA topoisomerases to restrict the foreign molecules. These results reveal a distinct mechanism underlying the silencing of viral and episomal invaders in the cell nuclei and suggest that PJA1 acts as a potential agent to prevent infectious and inflammatory diseases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Infecções por Vírus de DNA/genética , Vírus de DNA/genética , Plasmídeos/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Antivirais/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/virologia , Vírus de DNA/efeitos dos fármacos , DNA Viral/genética , Células Hep G2 , Interações Hospedeiro-Patógeno , Humanos , Interferons/farmacologia , Ubiquitina-Proteína Ligases/genética
4.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122987

RESUMO

Hepatitis B virus (HBV) infection may cause acute hepatitis B, chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma (HCC). However, the mechanisms by which HBV evades host immunity and maintains chronic infection are largely unknown. Here, we revealed that matrix metalloproteinase 9 (MMP-9) is activated in peripheral blood mononuclear cells (PBMCs) of HBV-infected patients, and HBV stimulates MMP-9 expression in macrophages and PBMCs isolated from healthy individuals. MMP-9 plays important roles in the breakdown of the extracellular matrix and in the facilitation of tumor progression, invasion, metastasis, and angiogenesis. MMP-9 also regulates respiratory syncytial virus (RSV) replication, but the mechanism underlying such regulation is unknown. We further demonstrated that MMP-9 facilitates HBV replication by repressing the interferon (IFN)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, IFN action, STAT1/2 phosphorylation, and IFN-stimulated gene (ISG) expression. Moreover, MMP-9 binds to type I IFN receptor 1 (IFNAR1) and facilitates IFNAR1 phosphorylation, ubiquitination, subcellular distribution, and degradation to interfere with the binding of IFANR1 to IFN-α. Thus, we identified a novel positive-feedback regulation loop between HBV replication and MMP-9 production. On one hand, HBV activates MMP-9 in infected patients and leukocytes. On the other hand, MMP-9 facilitates HBV replication through repressing IFN/JAK/STAT signaling, IFNAR1 function, and IFN-α action. Therefore, HBV may take the advantage of MMP-9 function to establish or maintain chronic infection.IMPORTANCE Hepatitis B virus (HBV) infection may cause chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC). However, the mechanisms by which HBV maintains chronic infection are largely unknown. Matrix metalloproteinase 9 (MMP-9) plays important roles in the facilitation of tumor progression, invasion, metastasis, and angiogenesis. However, the effects of MMP-9 on HBV replication and pathogenesis are not known. This study reveals that MMP-9 expression is activated in patients with CHB, and HBV stimulates MMP-9 production in PBMCs and macrophages. More interestingly, MMP-9 in turn promotes HBV replication through suppressing IFN-α action. Moreover, MMP-9 interacts with type I interferon receptor 1 (IFNAR1) to disturb the binding of IFN-α to IFNAR1 and facilitate the phosphorylation, ubiquitination, subcellular distribution, and degradation of IFNAR1. Therefore, these results discover a novel role of MMP-9 in viral replication and reveal a new mechanism by which HBV evades host immunity to maintain persistent infection.


Assuntos
Vírus da Hepatite B/fisiologia , Interações Hospedeiro-Patógeno , Metaloproteinase 9 da Matriz/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Replicação Viral , Células Cultivadas , Hepatócitos/virologia , Humanos , Leucócitos Mononucleares/imunologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA