Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(51): 28224-28232, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108623

RESUMO

By recombining natural cell signaling systems and further reprogramming cell functions, use of genetically engineered cells and bacteria as therapies is an innovative emerging concept. However, the inherent properties and structures of the natural signal sensing and response pathways constrain further development. We present a universal DNA-based sensing toolbox on the cell surface to endow new signal sensing abilities for cells, control cell states, and reprogram multiple cell functions. The sensing toolbox contains a triangular-prismatic-shaped DNA origami framework and a sensing core anchored inside the internal confined space to enhance the specificity and efficacy of the toolbox. As a proof of principle, the sensing toolbox uses the customizable sensing core with signal sensing switches and converters to recognize unconventional signal inputs, deliver functional components to cells, and then control cell responses, including specific tumor cell death, immune cell disinhibition and adhesion, and bacterial expression. This work expands the diversity of cell sensing signals and reprograms biological functions by constructing nanomechanical-natural hybrid cells, providing new strategies for engineering cells and bacteria in diagnosis and treatment applications.


Assuntos
DNA , Transdução de Sinais , Engenharia Genética , Bactérias/genética , Percepção de Quorum
2.
Cancer ; 129(10): 1513-1522, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813747

RESUMO

BACKGROUND: SH-1028 is a new third-generation EGFR tyrosine kinase inhibitors (TKI) to benefit patients with EGFR T790M-mutated NSCLC. Here, the authors report its clinical safety, preliminary efficacy, and pharmacokinetic (PK) profile for the first time. METHODS: Patients with EGFR T790M mutation, locally advanced non-small cell lung cancer (NSCLC), or metastatic NSCLC who had progressed after previous EGFR TKI therapy were eligible. Patients received SH-1028 at five oral dose levels (60 mg, 100 mg, 200 mg, 300 mg, and 400 mg) once daily until disease progression, unacceptable toxicity, or patient withdrawal. The primary end points were the safety, dose-limiting toxicity (DLT), maximum-tolerated dose (MTD), and PK profile. Secondary end points included objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), etc. RESULTS: Data cut off on December 31, 2020, a total of 20 patients were enrolled during the trial, two of three patients in 300 mg cohort experienced a DLT, and no DLT was observed in 240 mg cohort, 240 mg was determined to be the MTD of SH-1028. A total of 95.0% (19 of 20) of patients reported treatment-related adverse events (TRAEs), and the incidence of serious adverse events was 20.0% (4 of 20). The ORR and DCR of the 200 mg cohort were 75% (95% confidence interval [CI], 19.41-99.37) and 75.0% (95% CI, 19.41-99.37), respectively. The overall ORR was 40% (95% CI, 19.12-63.95), and DCR was 70.0% (95% CI, 45.72-88.11). According to the PK profile, the dosage regimen for future studies was determined as 200 mg once daily. CONCLUSIONS: SH-1028 showed a manageable safety and promising antitumor activity in patients with EGFR T790M mutation at the dose of 200 mg once daily. PLAIN LANGUAGE SUMMARY: Lung cancer has a high morbidity and mortality, with an estimated 1.8 million deaths in 2020. Non-small cell lung cancer accounts for approximately 85% of lung cancer. First- or second-generation EGFR TKIs' weak selectivity often led to the occurrence of treatment-related adverse events, such as interstitial lung disease, rash, diarrhea, etc., along with acquired drug resistance within approximately 1 year. A dose of 200 mg of SH-1028 once daily showed a preliminary antitumor activity with manageable safety in patients with EGFR T790M mutation.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/efeitos adversos
3.
BMC Plant Biol ; 23(1): 595, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017401

RESUMO

BACKGROUND: Stomatal variation, including guard cell (GC) density, size and chloroplast number, is often used to differentiate polyploids from diploids. However, few works have focused on stomatal variation with respect to polyploidization, especially for consecutively different ploidy levels within a plant species. For example, Allium tuberosum, which is mainly a tetraploid (2n = 4x = 32), is also found at other ploidy levels which have not been widely studied yet. RESULTS: We recently found cultivars with different ploidy levels, including those that are diploid (2n = 2x = 16), triploid (2n = 3x = 24), pseudopentaploid (2n = 34-42, mostly 40) and pseudohexaploid (2n = 44-50, mostly 48). GCs were evaluated for their density, size (length and width) and chloroplast number. There was no correspondence between ploidy level and stomatal density, in which anisopolyploids (approximately 57 and 53 stomata/mm2 in triploid and pseudopentaploid, respectively) had a higher stomatal density than isopolyploids (approximately 36, 43, and 44 stomata/mm2 in diploid, tetraploid and pseudohexaploid, respectively). There was a positive relationship between ploidy level and GC chloroplast number (approximately 44, 45, 51, 72 and 90 in diploid to pseudohexaploid, respectively). GC length and width also increased with ploidy level. However, the length increased approximately 1.22 times faster than the width during polyploidization. CONCLUSIONS: This study shows that GC size increased with increasing DNA content, but the rate of increase differed between length and width. In the process of polyploidization, plants evolved longer and narrower stomata with more chloroplasts in the GCs.


Assuntos
Cebolinha-Francesa , Estômatos de Plantas , Ploidias , Cebolinha-Francesa/genética , Tetraploidia , Triploidia
4.
Small ; 19(37): e2302301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37140089

RESUMO

Social biotic colonies often perform intricate tasks by interindividual communication and cooperation. Inspired by these biotic behaviors, a DNA nanodevice community is proposed as a universal and scalable platform. The modular nanodevice as the infrastructure of platform contains a DNA origami triangular prism framework and a hairpin-swing arm machinery core. By coding and decoding a signal domain on the shuttled output strand in different nanodevices, an orthogonal inter-nanodevice communication network is established to connect multi-nanodevices into a functional platform. The nanodevice platform enables implementation of diverse tasks, including signal cascading and feedback, molecular input recording, distributed logic computing, and modeling of simulation for virus transmission. The nanodevice platform with powerful compatibility and programmability presents an elegant example of the combination of the distributed operation of multiple devices and the complicated interdevice communication network, and may become a new generation of intelligent DNA nanosystems.


Assuntos
DNA , Lógica , DNA/química
5.
Opt Express ; 31(1): 737-744, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607006

RESUMO

Conventional methods have relied on specialized imaging equipment and advanced fabrication process to solve the problem of accurately aligning a microsensor to an optical fiber which is critical for its detection efficiency. To dramatically lower the barrier to high-precision alignment, we present a technique much easier to implement and much lower in cost. By fabricating replicable alignment and proximity structures on the surface of the sensor chip, we can achieve accurate alignment and position the fiber tip very close to the sensor without damaging it. We introduce an easy setup to examine the alignment result and demonstrate accurate alignment of dummy sensors as small as 5µm×5µm. We use our alignment method to realize efficient input coupling for a superconducting transition-edge sensor as an example of fruitful adoption in many possible applications.

6.
BMC Cancer ; 23(1): 1163, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031068

RESUMO

BACKGROUND: The NOD-, LRR- and pyrin domain­containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. It has been known to play an important role in the carcinogenesis and prognosis of breast cancer patients. While the clinical evidence of the relationship between NLRP3 inflammasome activation and long-term survival is still limited, the possible roles of parenchymal or immune-stromal cells of breast cancer tissues in contributing to such carcinogenesis and progression still need to be clarified. This study is an analysis of patients receiving breast cancer surgery in a previous clinical trial. METHODS: Immunohistochemistry (IHC) was used to detect the expression levels of NLRP3 inflammasome pathway-related proteins, including NLRP3, caspase-1, apoptosis-associated speck-like protein (ASC), IL-1ß, and IL-18, in parenchymal and immune-stromal cells of breast cancer tissues compared to those of adjacent normal tissues, respectively. The relationship between NLRP3 inflammasome expression and clinicopathological characteristics, as well as 5-year survivals were analyzed using the Chi-square test, Kaplan-Meier survival curves, and Cox regression analysis. RESULTS: In the parenchymal cells, ASC and IL-18 protein levels were significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (P<0.05). In the immune-stromal cells, all the five NLRP3 inflammasome pathway-related proteins were significantly elevated in breast cancer tissues compared with adjacent normal tissues (P < 0.05). Carcinoma cell embolus was found to significantly correlate with high NLRP3 expression in parenchymal cells of the tumor (x2=4.592, P=0.032), while the expression of caspase-1 was negatively correlated with tumor progression. Histological grades were found to have a positive correlation with IL-18 expression in immune-stromal cells of the tumor (x2=14.808, P=0.001). Kaplan-Meier survival analysis revealed that high IL-18 expression in the immune-stromal cells and the positive carcinoma cell embolus were both associated with poor survival (P < 0.05). The multivariable Cox proportional hazards regression model implied that the high IL-18 expression and positive carcinoma cell embolus were both independent risk factors for unfavorable prognosis. CONCLUSIONS: The activation of NLRP3 inflammasome pathways in immune-stromal and tumor parenchymal cells in the innate immune system was not isotropic and the main functions are somewhat different in breast cancer patients. Caspase-1 in parenchymal cells of the tumor was negatively correlated with tumor progression, and upregulation of IL-18 in immune-stromal cells of breast cancer tissues is a promising prognostic biomarker and a potential immunotherapy target. TRIAL REGISTRATION: This clinical trial has been registered at the Chictr.org.cn registry system on 21/08/2018 (ChiCTR1800017910).


Assuntos
Neoplasias da Mama , Carcinoma , Embolia , Humanos , Feminino , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Neoplasias da Mama/terapia , Caspase 1/metabolismo , Carcinogênese , Interleucina-1beta/metabolismo
7.
Inorg Chem ; 62(42): 17228-17235, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37801687

RESUMO

The separation of phenylenediamine (PDA) isomers is crucial in the field of chemical manufacturing. Herein, we presented a strategy for the separation of PDA isomers (para-phenylenediamine, p-PDA; meta-phenylenediamine, m-PDA; ortho-phenylenediamine, o-PDA) using four supramolecular framework materials of ns-cucurbit[10]uril (ns-Q[10]), (1) ns-Q[10](Cd), (2) ns-Q[10](Mn), (3) ns-Q[10](Cu), (4) ns-Q[10](Pb). Our findings indicated that these supramolecular framework materials of ns-Q[10] showed remarkable selectivity for para-phenylenediamine (p-PDA) in p-PDA, m-PDA, and o-PDA mixtures, respectively. The variations in selectivity observed in these four single-crystal structures arose from variations in the thermodynamic stabilities and binding modes of the host-guest complexes. Importantly, the supramolecular framework based on ns-Q[10] exhibited selective accommodation of p-PDA over its isomers. This study highlighted the practical application of ns-Q[10] in effectively separating PDA isomers and demonstrated the potential utility of ns-Q[10] in isolating other organic molecules.

8.
Gastric Cancer ; 26(2): 169-186, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36284068

RESUMO

BACKGROUND: LIN28B plays a critical role in the Warburg effect. However, its underlying mechanism remains elusive. Recently, it has been reported that LIN28B could collaborate with IGF2BP3, which can bind to m6A-modified c-MYC transcripts. Therefore, this study investigated if LIN28B recognises methylated c-MYC mRNA to promote the Warburg effect in gastric cancer. METHODS: Effects of LIN28B on gastric cancer were confirmed in vitro and in vivo. On the basis of bioinformatics analysis, the association between LIN28B and c-MYC mRNA was shown using RNA immunoprecipitation (RIP) and luciferase reporter assays. The role of m6A was identified by RNA pull-down assays. We further performed RIP-seq to search for long non-coding RNAs (lncRNAs) participating in the LIN28B binding process. Chromatin immunoprecipitation was used to show the impact of c-MYC on transcription of LIN28B and lncRNAs. RESULTS: LIN28B was identified to stabilize c-MYC mRNA by recognizing m6A. Furthermore, the interaction between c-MYC mRNA and LIN28B is speculated to be supported by LOC101929709, which binds to both LIN28B and IGF2BP3. Functional experiments revealed that LOC101929709 promotes the proliferation, migration and glycolysis of gastric cancer. Mechanistically, LOC101929709 enriched in the cytoplasm helps LIN28B stabilize c-MYC mRNA. Moreover, c-MYC promoted the transcription of both LOC101929709 and LIN28B. Additionally, LOC101929709 also activated the PI3K/AKT pathway. CONCLUSIONS: The c-MYC/LOC101929709/LIN28B axis promotes aerobic glycolysis and tumour progression. Thus, LOC101929709 can be a novel potential target for gastric cancer treatment.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , RNA Mensageiro , RNA Longo não Codificante/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética
9.
Pacing Clin Electrophysiol ; 46(7): 684-692, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37345321

RESUMO

OBJECTIVE: To identify the predictors of pacing-induced cardiomyopathy (PICM) and illustrate the safety and feasibility of conduction system pacing (CSP) upgrade on patients with long-term persistent atrial fibrillation (AF). METHODS: All patients with long-term persistent AF and normal left ventricular ejection fraction (LVEF) ≥50% were consecutively enrolled from January 2008 to December 2017, and all the patients with atrioventricular block (AVB) and high right ventricular pacing (RVP) percentage of at least 40%. The predictors of PICM were identified, and patients with PICM were followed up for at least 1 year regardless of CSP upgrade. Cardiac performances and lead outcomes were investigated in all patients before and after CSP upgrade. RESULTS: The present study included 139 patients, out of which 37 (26.62%) developed PICM, resulting in a significant decrease in the left ventricular ejection fraction (LVEF) from 56.11 ± 2.56% to 38.10 ± 5.81% (p< .01). The median duration for the development of PICM was 5.43 years. Lower LVEF (≤52.50%), longer paced QRS duration (≥175 ms), and higher RVP percentage (≥96.80%) were identified as independent predictors of PICM. Furthermore, the morbidity of PICM progressively increased with an increased number of predictors. The paced QRS duration (183.90 ± 22.34 ms vs. 136.57 ± 20.71 ms, p < .01), LVEF (39.35 ± 2.71% vs. 47.50 ± 7.43%, p < .01), and left ventricular end-diastolic diameter (LVEDD) (55.53 ± 5.67 mm vs. 53.20 ± 5.78 mm, p = .03) improved significantly on patients accepting CSP upgrade. CSP responses and complete reverse remodeling (LVEF ≥50% and LVEDD < 50 mm) were detected in 80.95% (17/21) and 42.9% (9/21) of patients. The pacing threshold (1.52 ± 0.78 V/0.4 ms vs. 1.27 ± 0.59 V/0.4 ms, p = .16) was stable after follow-up. CONCLUSION: PICM is very common in patients with long-term persistent AF, and CSP upgrade was favorable for better cardiac performance in this patient population.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Humanos , Fibrilação Atrial/terapia , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Doença do Sistema de Condução Cardíaco/terapia , Estimulação Cardíaca Artificial/métodos
10.
Neoplasma ; 70(2): 272-286, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37226932

RESUMO

Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) is highly expressed in a variety of malignant tumors and functions as an oncogene; however, its role in colorectal cancer (CRC) remains unclear. We aimed to explore the function and regulatory mechanisms of NUCKS1 and potential therapeutic agents targeting NUCKS1 in CRC. We knocked down and overexpressed NUCKS1 in CRC cells and explored its effects in vitro and in vivo. Flow cytometry, CCK-8, Western blotting, colony formation, immunohistochemistry, in vivo tumorigenic, and transmission electron microscopy analyses were performed to determine the effects of NUCKS1 on CRC cell function. LY294002 was used to examine the mechanism of NUCKS1 expression in CRC cells. Potential therapeutic agents for NUCKS1-high CRC patients were analyzed using the CTRP and PRISM datasets, and the function of selected agents was determined by CCK-8 and Western blotting. We revealed that NUCKS1 was highly expressed in CRC tissues and clinically correlated with poor prognosis in CRC patients. NUCKS1 knockdown induces cell cycle arrest, inhibits CRC cell proliferation, and promotes apoptosis and autophagy. These results were reversed when NUCKS1 was overexpressed. Mechanistically, NUCKS1 exerts a cancer-promoting function by activating the PI3K/AKT/mTOR signaling pathway. This was reversed when LY294002 was used to inhibit the PI3K/AKT pathway. Furthermore, we determined that mitoxantrone exhibited high drug sensitivity in NUCKS1-overexpressing CRC cells. This work demonstrated NUCKS1 plays a crucial role in CRC progression via the PI3K/AKT/mTOR signaling pathway. Additionally, mitoxantrone may be a potential therapeutic agent for CRC treatment. Therefore, NUCKS1 represents a promising anti-tumor therapeutic target.


Assuntos
Neoplasias Colorretais , Proteínas Nucleares , Fosfatidilinositol 3-Quinases , Fosfoproteínas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Mitoxantrona , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
11.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050556

RESUMO

It is critical to accurately align a quantum photon detector such as a superconducting transition-edge sensor (TES) to an optical fiber in order to optimize its detection efficiency. Conventionally, such alignment requires advanced infrared imaging equipment or sophisticated microfabrication. We introduce a novel technique based on the simple idea of reflected wave intensity measurement which allows to determine the boundary of the sensor and align it accurately with the fiber. By routing a light wave through an optical fiber for normal incidence on the surface of the sensor chip, and separating the reflected wave coupled back into the fiber from the input signal with a circulator, we can observe the variation in the reflected wave intensity when the beam spot of the fiber crosses the boundary between the sensor and substrate that have different reflectivity, and adjust the position of the fiber such that its output falls on the sensor. We evaluate quantitatively the precision of our alignment method, as well as the conditions that must be met to avoid photon loss caused by light beam divergence. After demonstrating the working principle of our scheme and verifying the alignment result experimentally, we employ it for efficient input signal coupling to a TES device, which is used for photon-number-resolving measurement to showcase the successful application of our alignment method in practice. Relying on only ordinary and widely used optical elements that are easy to operate and low in cost, our solution is much less demanding than conventional methods. Dramatically easier to implement and not restricted by the detection mechanism of the sensor, it is accessible to a much broader community.

12.
J Am Chem Soc ; 144(49): 22458-22469, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36446637

RESUMO

Although engineered T cells with transgenic chimeric antigen receptors (CARs) have made a breakthrough in cancer therapeutics, this approach still faces many challenges in the specificity, efficacy, and self-safety of genetic engineering. Here, we developed a nano-biohybrid DNA engager-reprogrammed T-cell receptor (EN-TCR) system to improve the specificity and efficacy, mitigate the excessive activation, and shield against risks from transgenesis, thus achieving a diversiform and precise control of the T-cell response. Utilizing modular assembly, the EN-TCR system can graft different specificities on T cells via antibody assembly. Besides, the designability of DNA hybridization enables precise target recognition by the library of multiantigen cell recognition circuits and allows gradual tuning of the T-cell activation level by the signaling switch and independent control over different types of T cells. Furthermore, we demonstrated the effectiveness of the system in tumor models. Together, this study provides a nongenetic T-cell engineering strategy to overcome major hindrances in T-cell therapy and may be extended to a general and convenient cell engineering strategy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Ativação Linfocitária , Neoplasias/metabolismo , DNA/metabolismo
13.
Opt Express ; 30(2): 1452-1465, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209305

RESUMO

Due to the global challenge of donor kidney shortage, expanding the pool of deceased donors has been proposed to include expanded criteria donors. However, the lack of methods to precisely measure donor kidney injury and predict the outcome still leads to high discard rates and recipient complications. As such, evaluation of deceased donor kidney quality is critical prior to transplantation. Biomarkers from donor urine or serum provide potential advantages for the precise measure of kidney quality. Herein, simultaneous detection of secretory leukocyte peptidase inhibitor (SLPI) and interleukin 18 (IL-18), two important kidney injury biomarkers, has been achieved, for the first time, with an ultra-high sensitivity using surface enhanced Raman scattering (SERS). Specifically, black phosphorus/gold (BP/Au) nanohybrids synthesized by depositing Au nanoparticles (NPs) onto the BP nanosheets serve as SERS-active substrates, which offer a high-density of inherent and accessible hot-spots. Meanwhile, the nanohybrids possess biocompatible surfaces for the enrichment of target biomarkers through the affinity with BP nanosheets. Quantitative detection of SLPI and IL-18 were then achieved by characterizing SERS signals of these two biomarkers. The results indicate high sensitivity and excellent reproducibility of this method. The limits of detection reach down to 1.53×10-8 mg/mL for SLPI and 0.23×10-8 mg/mL for IL-18. The limits of quantification are 5.10×10-8 mg/mL and 7.67×10-9 mg/mL for SLPI and IL-18. In addition, simultaneous detection of these biomarkers in serum was investigated, which proves the feasibility in biologic environment. More importantly, this method is powerful for detecting multiple analytes inheriting from excellent multiplexing ability of SERS. Giving that the combined assessment of SLPI and IL-18 expression level serves as an indicator of donor kidney quality and can be rapidly and reproducibly conducted, this SERS-based method holds great prospective in clinical practice.


Assuntos
Biomarcadores/metabolismo , Ouro/química , Interleucina-18/metabolismo , Rim/metabolismo , Fósforo/química , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Análise Espectral Raman/métodos , Humanos , Transplante de Rim , Nanopartículas Metálicas/química , Modelos Teóricos , Doadores de Tecidos
14.
Anticancer Drugs ; 33(10): 1186-1190, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946569

RESUMO

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have significantly improved response in all stages of patients with EGFR positive mutations in nonsmall cell lung cancer. However, the primary resistance mechanism of EGFR-TKIs has not been thoroughly revealed. Here, we described a case of a 64-year-old male with lung adenocarcinoma presented primary resistance on osimertinib combined with bevacizumab and platinum-based chemotherapy, next-generation sequencing revealed EGFR exon 21 L858R mutation and MET gene amplification. Afterward, savolitinib monotherapy was started until now, and the treatment was temporarily successful, the last follow-up clinical evaluation was near complete response, the progression-free survival has over 7 months. Our case highlights that EGFR-TKIs may be not the optimal choice for lung adenocarcinoma with primary EGFR -sensitive mutation with MET amplification simultaneously, whereas MET inhibitor alone may be an effective treatment option. In clinical practice, we should fully consider the possibility of primary resistance in EGFR-TKIs administration.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Adenocarcinoma de Pulmão/tratamento farmacológico , Compostos de Anilina/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases/farmacologia , Pirazinas , Pirimidinas , Triazinas
15.
J Appl Microbiol ; 132(4): 2673-2682, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34850505

RESUMO

AIM: During several local COVID-19 outbreaks in China in 2020, SARS-CoV-2 or its RNA was isolated or detected from frozen food or packages, revealing the lack of effective disinfection measures in the frozen food chain and risk of transmission. We explored the possibility that disinfectant plus antifreeze could be delivered as thermal fog to realize effective disinfection at subzero temperatures. METHODS AND RESULTS: We selected two disinfectant-antifreeze combinations, didecyl dimethyl ammonium bromide (DDAB) - propylene glycol (PPG) and peracetic acid (PAA) - triethylene glycol (TEG), and each combination is used with a custom-optimized thermal fogging machine. The two fogs were tested in -20°C freezer warehouses for their disinfection efficacy against a coronavirus porcine epidemic diarrhoea virus (PEDV) field strain, a swine influenza virus (SIV) field strain, and three indicator bacteria, Escherichia coli, Staphylococcus aureus and Bacillus subtilis endospores. At -20°C, the DDAB-PPG or PAA-TEG thermal fogs settle within 3.5 to 4.5 h and effectively inactivated PEDV with median tissue culture infective dose of 10-3.5 0.1 ml-1 and SIV-H1N1 with hemagglutination titre of 26  ml-1 within 15-60 min. DDAB-PPG could inactivate S. aureus and E. coli vegetative cells (106  cfu ml-1 ) within 15-60 min but not effective on B. subtilis spores, while PAA-TEG could disinfect B. subtilis spores more effectively than for S. aureus and E. coli. CONCLUSIONS: We showed that a practical subzero temperature disinfection technology was effective in killing enveloped viruses and vegetative bacteria or bacterial spores. DDAB-PPG or PAA-TEG thermal fogging may be a practical technology for cold-chain disinfection. SIGNIFICANCE AND IMPACT OF THE STUDY: This subzero temperature disinfection technology could help to meet the urgent public health need of environmental disinfection in frozen food logistics against pandemic and other potential pathogens and to enhance national and international biosecurity.


Assuntos
COVID-19 , Desinfetantes , Vírus da Influenza A Subtipo H1N1 , Animais , Bacillus subtilis , Desinfetantes/farmacologia , Desinfecção/métodos , Escherichia coli , Ácido Peracético/farmacologia , SARS-CoV-2 , Staphylococcus aureus , Suínos , Tempo (Meteorologia)
16.
Acta Pharmacol Sin ; 43(4): 788-796, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34349236

RESUMO

An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , SARS-CoV-2
17.
Mol Ther ; 29(5): 1703-1715, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33839323

RESUMO

The tumor microenvironment (TME), controlled by intrinsic mechanisms of carcinogenesis and epigenetic modifications, has, in recent years, become a heavily researched topic. The TME can be described in terms of hypoxia, metabolic dysregulation, immune escape, and chronic inflammation. RNA methylation, an epigenetic modification, has recently been found to have a pivotal role in shaping the TME. The N6-methylation of adenosine (m6A) modification is the most common type of RNA methylation that occurs in the N6-position of adenosine, which is the primary internal modification of eukaryotic mRNA. Compelling evidence has demonstrated that m6A regulates transcriptional and protein expression through splicing, translation, degradation, and export, thereby mediating the biological processes of cancer cells and/or stromal cells and characterizing the TME. The TME also has a crucial role in the complicated regulatory network of m6A modifications and, subsequently, influences tumor initiation, progression, and therapy responses. In this review, we describe the features of the TME and how the m6A modification modulates and interacts with it. We also focus on various factors and pathways involved in m6A methylation. Finally, we discuss potential therapeutic strategies and prognostic biomarkers with respect to the TME and m6A modification.


Assuntos
Adenosina/análogos & derivados , Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , Adenosina/metabolismo , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Microambiente Tumoral
18.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430397

RESUMO

To investigate the potential of ginsenosides in treating osteoporosis, ginsenoside compound K (GCK) was selected to explore the potential targets and mechanism based on network pharmacology (NP). Based on text mining from public databases, 206 and 6590 targets were obtained for GCK and osteoporosis, respectively, in which 138 targets were identified as co-targets of GCK and osteoporosis using intersection analysis. Five central gene clusters and key genes (STAT3, PIK3R1, VEGFA, JAK2 and MAP2K1) were identified based on Molecular Complex Detection (MCODE) analysis through constructing a protein-protein interaction network using the STRING database. Gene Ontology (GO) analysis implied that phosphatidylinositol-related biological process, molecular modification and function may play an important role for GCK in the treatment of osteoporosis. Function and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the c-Fms-mediated osteoclast differentiation pathway was one of the most important mechanisms for GCK in treating osteoporosis. Meanwhile, except for being identified as key targets based on cytoHubba analysis using Cytoscape software, MAPK and PI3K-related proteins were enriched in the downstream of the c-Fms-mediated osteoclast differentiation pathway. Molecular docking further confirmed that GCK could interact with the cavity on the surface of a c-Fms protein with the lowest binding energy (-8.27 Kcal/moL), and their complex was stabilized by hydrogen bonds (Thr578 (1.97 Å), Leu588 (2.02 Å, 2.18 Å), Ala590 (2.16 Å, 2.84 Å) and Cys 666 (1.93 Å)), van der Waals and alkyl hydrophobic interactions. Summarily, GCK could interfere with the occurrence and progress of osteoporosis through the c-Fms-mediated MAPK and PI3K signaling axis regulating osteoclast differentiation.


Assuntos
Ginsenosídeos , Osteoporose , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Farmacologia em Rede , Osteoporose/tratamento farmacológico
19.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216134

RESUMO

Lung adenocarcinoma (LAC) is a common lung cancer with a high malignancy that urgently needs to be treated with effective drugs. Ginsenoside Rh4 exhibits outstanding antitumor activities. However, few studies reported its effects on growth, metastasis and molecular mechanisms in LAC. Here, Rh4 is certified to show a strong anti-LAC efficiency in vitro and in vivo. Results of flow cytometry and Western blot are obtained to exhibited that Rh4 markedly restrained cellular proliferation and colony formation by arresting the cell cycle in the G1 phase. Results from a wound healing assay and transwell assays demonstrated that Rh4 is active in the antimigration and anti-invasion of LAC. The analysis of Western blot, immunofluorescence and RT-qPCR confirmed that Rh4 reverses the epithelial-mesenchymal transition (EMT) through upregulating the gene expression of E-cadherin and downregulating that of snail, N-cadherin and vimentin. In vivo results from immunohistochemistry show consistent trends with cellular studies. Furthermore, Rh4 suppresses the Janus kinases2/signal transducer and activator of the transcription3 (JAK2/STAT3) signaling pathway stimulated by TGF-ß1. Silencing the STAT3 signal or co-treating with AG490 both enhanced the EMT attenuation caused by Rh4, which revealed that Rh4 suppressed EMT via inhibiting the JAK2/STAT3 signaling pathway. These findings explore the capacity and mechanism of Rh4 on the antimetastasis of LAC, providing evidence for Rh4 to LAC therapy.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Ginsenosídeos/farmacologia , Janus Quinase 2/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia
20.
Inorg Chem ; 60(12): 8451-8455, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34061510

RESUMO

An open-frame aluminophosphate, K[(Zn0.5Al0.5)2P2O8] (KZAPO), was rationally designed by a substitution design strategy and synthesized by a high-temperature molten salt method. Compared with the parent crystal of K[ZnBP2O8], KZAPO was characterized by similar 4 × 8 × 8 networks, a comparable short-wave ultraviolet transparency and a more regular tetrahedral frame with the mixing of (ZnO4)6- and (AlO4)5- anionic groups, highlighting the multifunctional roles that anionic group mixing played in structural and property modulations. In particular, KZAPO was characterized by a high thermal stability (over 850 °C) and a congruent-melting behavior, being conducive to practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA