Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(21): 14718-14724, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29774911

RESUMO

Ab initio simulations combined with the Berry phase method are employed to investigate ferroelectric polarization of tetragonal CsPbBr3 crystals by applying hydrostatic pressure varying from 0 to 19 GPa; we find that the object research belongs to the P4mm space group. The calculated results show that the materials undergo a paraelectric-ferroelectric phase transition when the pressure increases to a critical value 15 GPa. The polarization is strongly enhanced and attains a high value of about 23 µC cm-2, owing to the increase in the ionic and electric contributions to the polarization under compressive strain. We present a detailed theoretical investigation to analyze the origin of polarization. The ionic polarization is mainly ascribed to the central displacements of Pb2+ cations and Br- anions induced by a highly distorted octahedral PbBr6- framework. Electronic structure calculations suggest that asymmetric hopping p orbital electrons of Br(3) ions are responsible for the enhancement in electric polarization. These discoveries suggest that tetragonal CsPbBr3 has significant potential in future ferroelectric applications, and this can broaden the application field from optoelectronics to ferroelectrics.

2.
Nanoscale ; 10(18): 8677-8688, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29701224

RESUMO

Recently, two-dimensional (2D) layered organic-inorganic hybrid perovskites have attracted a huge amount of interest due to their unique layered structure, and potential optical properties. However, amongst researchers it has long been disputed as to whether it is suitable for use as a photovoltaic material or light-emitting device. Here, we present a detailed theoretical investigation to discuss the photovoltaic and optoelectronic properties of a novel synthetic 2D layered perovskite (PEA)2PbI4. Based on the calculated geometric and electronic structure, charge carrier mobilities of the 2D layered (PEA)2PbI4 are predicted theoretically. In addition, the linear dichroism and exciton binding energies are also calculated. We found that the carrier mobilities of the 2D layered (PEA)2PbI4 reach the same order of magnitude as those of the optoelectronic material MoS2, but smaller than those of the photovoltaic material MAPbI3 and Si crystal, whereas exciton binding energies (Eb) enlarge with the thinning layers, being obviously higher than MAPbI3 and Si crystal. Moreover, the system exhibits a strong linear dichroism, suggesting weak absorption along the c axis in the visible spectrum, which is detrimental to photovoltaics. Our work provides a theoretical basis to prove that ultrathin two-dimensional (2D) materials may be potential candidates for optoelectronic detection devices, rather than solar absorbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA