Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(48): e202314729, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37814139

RESUMO

The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.

2.
Chemistry ; 26(49): 11199-11208, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227410

RESUMO

Liquid crystalline block copolymers (LCBCPs) are promising for developing functional materials owing to an assembly of better functionalities. Taking advantage of differences in reactivity between alkynyl and vinyl over temperature during hydrosilylation, a series of LCBCPs with modular functionalization of the block copolymers (BCPs) are reported by independently and site-selectively attaching azobenzene moieties containing alkynyl (LC1 ) and Si-H (LC2 ) terminals into well-designed poly(styrene)-block-polybutadienes (PS-b-PBs) and poly(4-vinylphenyldimethylsilane)-block-polybutadienes (PVPDMS-b-PBs) produced from living anionic polymerization (LAP). By the principle of modular functionalization, it is demonstrated that mono-functionalized (PVPDMS-g-LC1 )-b-PB and PS-b-(PB-g-LC2 ) not only maintain independence but also have cooperative contributions to bi-functionalized (PVPDMS-g-LC1 )-b-(PB-g-LC2 ) in terms of mesomorphic performances and microphase separation, which is evident from differential scanning calorimetry (DSC) and polarized optical morphologies (POM) and identified by powder X-ray diffractions. With the application of the new principle of modular functionalization, local-crosslinked liquid crystalline networks (LCNs) with controlled functionality are successfully synthesized, which show well-controlled phase behaviors over molecular compositions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA