Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2311076, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38279579

RESUMO

Developing active, stable, and cost-efficient electrocatalysts to replace platinum for the alkaline hydrogen evolution reaction (HER) is highly desirable yet represents a great challenge. Here, it is reported on a facile one-pot synthesis of RuxNi layered double hydroxides (RuxNi-LDHs) that exhibit remarkable HER activity and stability after an in-situ activation treatment, surpassing most state-of-the-art Ru-based catalysts as well as commercial Ru/C and Pt/C catalysts. The structural and chemical changes triggered by in-situ activation are systematically investigated, and the results clearly show that the pristine, less-active RuxNi-LDHs are transformed into a highly active catalyst characterized by raft-like, defect-rich Ru° particles decorated on the surface of RuxNi-LDHs. Density functional theory (DFT) calculations reveal that the defective Ru sites can effectively optimize the reaction pathway and lower the free energies of the elemental steps involved, leading to enhanced intrinsic activity. This work highlights the importance of the currently understudied strategy of defect engineering in boosting the HER activity of Ru-based catalysts and offers an effective approach involving in-situ electrochemical activation for the development of high-performance alkaline HER catalysts.

2.
Small ; : e2402793, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757420

RESUMO

Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.

3.
Biol Reprod ; 110(5): 895-907, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38267362

RESUMO

It is known that the oocyte has a limited capacity to acquire and metabolize glucose, and it must rely on cumulus cells (CCs) to take up glucose and produce pyruvate for use to produce ATP through oxidative phosphorylation. We therefore propose that miRNAs might regulate glucose metabolism (GM) in CCs and might be used as markers for oocyte quality assessment. Here, mouse CC models with impaired glycolysis or pentose phosphate pathway (PPP) were established, and miRNAs targeting the key enzymes in glycolysis/PPP were predicted using the miRNA target prediction databases. Expression of the predicted miRNAs was compared between CCs with normal and impaired glycolysis/PPP to identify candidate miRNAs. Function of the candidate miRNAs was validated by transfecting CCs or cumulus-oocyte-complexes (COCs) with miRNA inhibitors and observing effects on glucose metabolites of CCs and on competence of oocytes. The results validated that miR-23b-3p, let-7b-5p, 34b-5p and 145a-5p inhibited glycolysis, and miR-24-3p, 3078-3p,183-5p and 7001-5p inhibited PPP of CCs. Our observation using a more physiologically relevant model (intact cultured COCs) further validated the four glycolysis-targeting miRNAs we identified. Furthermore, miR-let-7b-5p, 34b-5p and 145a-5p may also inhibit PPP, as they decreased the production of glucose-6-phosphate. In conclusion, miRNAs play critical roles in GM of CCs and may be used as markers for oocyte quality assessment. Summary sentence:  We identified and validated eight new miRNAs that inhibit glycolysis and/or pentose phosphate pathways in cumulus cells (CCs) suggesting that miRNAs play critical roles in glucose metabolism of CCs and may be used for oocyte quality markers.


Assuntos
Células do Cúmulo , Glucose , Glicólise , MicroRNAs , Animais , Células do Cúmulo/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Glucose/metabolismo , Feminino , Glicólise/fisiologia , Via de Pentose Fosfato , Oócitos/metabolismo
4.
Reproduction ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949488

RESUMO

Studies on the mechanisms behind cumulus expansion and cumulus cell (CC) apoptosis are essential for understanding the mechanisms for oocyte maturation. Genes expressed in CCs might be used as markers for competent oocytes and/or embryos. In this study, both in vitro (IVT) and in vivo (IVO) mouse oocyte models with significant difference in cumulus expansion and CC apoptosis were used to identify and validate new genes regulating cumulus expansion and CC apoptosis of mouse oocytes. We first performed mRNA sequencing and bioinformatic analysis using the IVT oocyte model to identify candidate genes. We then analyzed functions of the candidate genes by RNAi or gene overexpression to select the candidate cumulus expansion and CC apoptosis-regulating genes. Finally, we validated the cumulus expansion and CC apoptosis-regulating genes using the IVO oocyte model. The results showed that while Spp1, Sdc1, Ldlr, Ezr and Mmp2 promoted, Bmp2, Angpt2, Edn1, Itgb8, Cxcl10 and Agt inhibited cumulus expansion. Furthermore, Spp1, Sdc1 and Ldlr inhibited CC apoptosis. In conclusion, by using both IVT and IVO oocyte models, we have identified and validated a new group of cumulus expansion and/or apoptosis-regulating genes, which may be used for selection of quality oocytes/embryos and for elucidating the molecular mechanisms behind oocyte maturation.

5.
Phys Chem Chem Phys ; 26(10): 8494-8503, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38411205

RESUMO

Single-atom catalysts (SACs) are emerging as promising candidates for electrochemical nitrogen reduction reaction (NRR). Previous studies have shown that the single-atom centers of SACs can not only serve as active sites, but also act as promoters to affect the catalytic properties. However, the use of single metal atoms as promoters in electrocatalysis has rarely been studied. In this work, the defective Keggin-type phosphomolybdic acid (PMA) is used as a substrate to support the single metal atoms. We aim to tune the electronic structures of the exposed molybdenum active sites on defective PMA by using these supported single atoms as promoters for efficient NRR. Firstly, the stability and N2 adsorption capacity were studied to screen for an effective catalyst capable of activating N2. Most of the SACs were found to have good stability and N2 adsorption capacity. Then, we compared the selectivity and NRR activity of the catalysts and found that catalysts with metal atom promoters have improved NRR selectivity and activity. Finally, electronic structure analysis was carried out to understand the promoting effect of the promoter on N2 activation and the activity of the NRR process. This work provides a new strategy for designing efficient catalysts for electrocatalytic reactions by introducing promoters.

6.
J Reprod Dev ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910127

RESUMO

Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.

7.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676198

RESUMO

Currently, 3D reconstruction methods in structured light are generally implemented in a pre-calibrated area. To realize a full-field reconstruction, the calibration plate can be moved to multiple positions in a time-consuming manner, or the whole field can be calibrated with the help of a large calibration plate, which is more costly. In this paper, we address this problem by proposing a method for obtaining a global phase-angle model under a locally calibrated region, and based on this relationship, we investigate and analyze the reconstruction inside and outside of the calibrated zone. The results show that the method can reconstruct the object outside of the calibration zone completely, and can keep the planarity error around 0.1 mm and the sphericity error below 0.06 mm. The method only requires local calibration of the projected fringes at the two calibration positions to realize the 3D reconstruction of the full-field, which makes the method more advantageous.

8.
Angew Chem Int Ed Engl ; 63(15): e202400086, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329002

RESUMO

Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.

9.
Angew Chem Int Ed Engl ; 63(11): e202318595, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38224211

RESUMO

Achieving a more balanced charge transport by morphological control is crucial in reducing bimolecular and trap-assisted recombination and enhancing the critical parameters for efficient organic solar cells (OSCs). Hence, a facile strategy is proposed to reduce the crystallinity difference between donor and acceptor by incorporating a novel multifunctional liquid crystal small molecule (LCSM) BDTPF4-C6 into the binary blend. BDTPF4-C6 is the first LCSM based on a tetrafluorobenzene unit and features a low liquid crystal phase transition temperature and strong self-assembly ability, conducive to regulating the active layer morphology. When BDTPF4-C6 is introduced as a guest molecule into the PM6 : Y6 binary, it exhibits better compatibility with the donor PM6 and primarily resides within the PM6 phase because of the similarity-intermiscibility principle. Moreover, systematic studies revealed that BDTPF4-C6 could be used as a seeding agent for PM6 to enhance its crystallinity, thereby forming a more balanced and favourable charge transport with suppressed charge recombination. Intriguingly, dual Förster resonance energy transfer was observed between the guest molecule and the host donor and acceptor, resulting in an improved current density. This study demonstrates a facile approach to balance the charge mobilities and offers new insights into boosting the efficiency of single-junction OSCs beyond 20 %.

10.
Environ Microbiol ; 25(7): 1250-1264, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807729

RESUMO

Caulobacter phage CbK has been extensively studied as a model system in virology and bacteriology. Lysogeny-related genes have been found in each CbK-like isolate, suggesting a life strategy of both lytic and lysogenic cycles. However, whether CbK-related phages can enter lysogeny is still undetermined. This study identified new CbK-like sequences and expanded the collection of CbK-related phages. A common ancestry with a temperate lifestyle was predicted for the group, however, which subsequently evolved into two clades of different genome sizes and host associations. Through the examination of phage recombinase genes, alignment of attachment sites on the phage and bacterial genomes (attP-attB pairing), and the experimental validation, different lifestyles were found among the different members. A majority of clade II members retain a lysogenic lifestyle, whereas all clade I members have evolved into an obligate lytic lifestyle via a loss of the gene encoding Cre-like recombinase and the coupled attP fragment. We postulated that the loss of lysogeny may be a by-product of the increase in phage genome size, and vice versa. Clade I is likely to overcome the costs through maintaining more auxiliary metabolic genes (AMGs), particularly for those involved in protein metabolism, to strengthen host takeover and further benefit virion production.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Lisogenia/genética , Recombinases/genética
11.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375152

RESUMO

In this work, we investigate the effect of peripheral B doping on the electrocatalytic nitrogen reduction reaction (NRR) performance of N-doped graphene-supported single-metal atoms using density functional theory (DFT) calculations. Our results showed that the peripheral coordination of B atoms could improve the stability of the single-atom catalysts (SACs) and weaken the binding of nitrogen to the central atom. Interestingly, it was found that there was a linear correlation between the change in the magnetic moment (µ) of single-metal atoms and the change in the limiting potential (UL) of the optimum NRR pathway before and after B doping. It was also found that the introduction of the B atom suppressed the hydrogen evolution reaction, thereby enhancing the NRR selectivity of the SACs. This work provides useful insights into the design of efficient SACs for electrocatalytic NRR.

12.
Angew Chem Int Ed Engl ; 62(43): e202309713, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698185

RESUMO

Regulating molecular packing and aggregation of photoactive layer is a critical but challenging issue in developing high-performance organic solar cells. Herein, two structurally similar analogues of anthra[2,3-b : 6,7-b']dithiophene (ADT) and naphtho[1,2-b : 5,6-b']dithiophene (NDT) are developed as solid additive to exploit their effect in regulating the molecular aggregation and π-stacking of photoactive layer. We clarify that the perpendicular arrangements of NDT can enlarge the molecular packing space and improve the face-on stacking of Y6 during the film formation, favoring a more compact and ordered long-range π-π stacking in the out-of-plane direction after the removal of NDT under thermal annealing. The edge-to-face stacked herringbone-arrangement of ADT along with its non-volatilization under thermal annealing can induce the coexistence of face-on and edge-on stacking of blend film. As a result, the NDT treatment shows encouraging effect in improving the photovoltaic performance of devices based on various systems. Particularly, a remarkable PCE of 18.85 % is achieved in the PM6 : L8-BO-based device treated by NDT additive, which is a significant improvement with regard to the PCE of 16.41 % for the control device. This work offers a promising strategy to regulate the molecular packing and aggregation of photoactive layer towards significantly improved performance and stability of organic solar cells.

13.
Angew Chem Int Ed Engl ; 62(36): e202308307, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37463122

RESUMO

Achieving both high open-circuit voltage (Voc ) and short-circuit current density (Jsc ) to boost power-conversion efficiency (PCE) is a major challenge for organic solar cells (OSCs), wherein high energy loss (Eloss ) and inefficient charge transfer usually take place. Here, three new Y-series acceptors of mono-asymmetric asy-YC11 and dual-asymmetric bi-asy-YC9 and bi-asy-YC12 are developed. They share the same asymmetric D1 AD2 (D1 =thieno[3,2-b]thiophene and D2 =selenopheno[3,2-b]thiophene) fused-core but have different unidirectional sidechain on D1 side, allowing fine-tuned molecular properties, such as intermolecular interaction, packing pattern, and crystallinity. Among the binary blends, the PM6 : bi-asy-YC12 one has better morphology with appropriate phase separation and higher order packing than the PM6 : asy-YC9 and PM6 : bi-asy-YC11 ones. Therefore, the PM6 : bi-asy-YC12-based OSCs offer a higher PCE of 17.16 % with both high Voc and Jsc , due to the reduced Eloss and efficient charge transfer properties. Inspired by the high Voc and strong NIR-absorption, bi-asy-YC12 is introduced into efficient binary PM6 : L8-BO to construct ternary OSCs. Thanks to the broadened absorption, optimized morphology, and furtherly minimized Eloss , the PM6 : L8-BO : bi-asy-YC12-based OSCs achieve a champion PCE of 19.23 %, which is one of the highest efficiencies among these annealing-free devices. Our developed unidirectional sidechain engineering for constructing bi-asymmetric Y-series acceptors provides an approach to boost PCE of OSCs.

14.
Angew Chem Int Ed Engl ; 62(30): e202304127, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37232174

RESUMO

The central core in A-DA1 D-A-type small-molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3-b]quinoxaline (PyQx) as new electron-deficient unit by combining with the cascade-chlorination strategy, namely Py1, Py2, Py3, Py4 and Py5. The introduction of chlorine atoms reduces the intramolecular charge transfer effects but elevates the LUMO values. Density functional theory (DFT) reveals that Py2 with ortho chlorine substituted PyQx and Py5 with two chlorine atoms yield larger dipole moments and smaller π⋅⋅⋅π stacking distances, as compared with the other three acceptors. Moreover, Py2 shows the strongest light absorption capability induced by extended orbit overlap lengths and more efficient packing structures in the dimers. These features endow the best device performance of Py2 due to the better molecular packing and aggregation behaviors, more suitable domain sizes with better exciton dissociation and charge recombination. This study highlights the significance of incorporating large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers into the development of high-performance SMAs, providing insight into the design of efficient A-DA1 D-A-type SMAs for OSCs.

15.
BMC Neurosci ; 23(1): 62, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357867

RESUMO

Inflammation and glutamate (GLU) are widely thought to participate in the pathogenesis of depression, and current evidence suggests that the development of depression is associated with the activation of the kynurenine pathway (KP). However, the exact mechanism of KP among the inflammation, GLU and depression remain poorly understood. In this study, we examined the involvement of KP, inflammation and GLU in depressive phenotype induced by chronic unpredictable mild stress (CUMS) in C57B/6 J mice. Our results showed that CUMS caused depressive like-behavior in the sucrose preference test, tail suspension test and forced swimming test. From a molecular perspective, CUMS upregulated the peripheral and central inflammatory response and activated indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of KP, which converts tryptophan (TRP) into kynurenine (KYN). KYN is a precursor for QA in microglia, which could activate the N-methyl-D-aspartate receptor (NMDAR), increasing the GLU release, mirrored by increased IDO activity, quinolinic acid and GLU levels in the hippocampus, prefrontal cortex and serum. However, intervention with IDO inhibitor 1-methyl-DL-tryptophan (50 mg/kg/s.c.) and 1-methyl-L-tryptophan (15 mg/kg/i.p.) reversed the depressive-like behaviors and adjusted central and peripheral KP's metabolisms levels as well as GLU content, but the inflammation levels were not completely affected. These results provide certain evidence that KP may be a vital pathway mediated by IDO linking inflammation and glutamate, contributing to depression.


Assuntos
Depressão , Cinurenina , Camundongos , Animais , Cinurenina/metabolismo , Depressão/etiologia , Depressão/metabolismo , Triptofano , Ácido Glutâmico/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Modelos Animais de Doenças , Inflamação
16.
Cancer Cell Int ; 22(1): 133, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331234

RESUMO

Lung cancer remains one of the major causes of cancer-related death globally. Recent studies have shown that aberrant m6A levels caused by METTL3 are involved in the malignant progression of various tumors, including lung cancer. The m6A modification, the most abundant RNA chemical modification, regulates RNA stabilization, splicing, translation, decay, and nuclear export. The methyltransferase complex plays a key role in the occurrence and development of many tumors by installing m6A modification. In this complex, METTL3 is the first identified methyltransferase, which is also the major catalytic enzyme. Recent findings have revealed that METTL3 is remarkably associated with different aspects of lung cancer progression, influencing the prognosis of patients. In this review, we will focus on the underlying mechanism of METT3 in lung cancer and predict the future work and potential clinical application of targeting METTL3 for lung cancer therapy.

17.
Macromol Rapid Commun ; 43(22): e2200139, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35319114

RESUMO

All-polymer solar cells (all-PSCs) are one of the most promising application-oriented organic photovoltaic technologies due to their excellent operational and mechanical stability. However, the power conversion efficiencies (PCEs) are mostly lower than 16%, restricting their core competitiveness. Furthermore, the improvement of mechanical durability is rarely paid attention to cutting-edge all-PSCs. This work deploys a low-cost "technical grade" PCBM (incompletely separated but pure mixtures containing ≥90% [70]PCBM or [60]PCBM), into the efficient PM6:PY-IT all-polymer blend, successfully yielding a high-performance ternary device with 16.16% PCE, among the highest PCE values for all-PSCs. Meanwhile, an excellent mechanical property (i.e., crack onset strain = 11.1%) promoted from 9.5% for the ternary system is also demonstrated. The "technical grade" PCBM slightly disrupts the crystallization of polymers, and disperses well into the amorphous polymer regions of the all-PSC blends, thus facilitating charge transport and improving film ductility simultaneously. All these results confirm introducing low-cost "technical grade" PCBM with high electron mobility into all-polymer blends can improve carrier mobility, reduce charge recombination, and optimize morphology of the amorphous polymer regions, thus yielding more efficient and mechanically durable all-PSCs.

18.
Neural Plast ; 2022: 5379876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432523

RESUMO

Stroke is one of the leading causes of death and disability worldwide. Evidence shows that ischemic stroke (IS) accounts for nearly 80 percent of all strokes and that the etiology, risk factors, and prognosis of this disease differ by gender. Female patients may bear a greater burden than male patients. The immune system may play an important role in the pathophysiology of females with IS. Therefore, it is critical to investigate the key biomarkers and immune infiltration of female IS patients to develop effective treatment methods. Herein, we used weighted gene co-expression network analysis (WGCNA) to determine the key modules and core genes in female IS patients using the GSE22255, GSE37587, and GSE16561 datasets from the GEO database. Subsequently, we performed functional enrichment analysis and built a protein-protein interaction (PPI) network. Ten genes were selected as the true central genes for further investigation. After that, we explored the specific molecular and biological functions of these hub genes to gain a better understanding of the underlying pathogenesis of female IS patients. Moreover, the "Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)" was used to examine the distribution pattern of immune subtypes in female patients with IS and normal controls, revealing a new potential target for clinical treatment of the disease.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Biomarcadores , Feminino , Redes Reguladoras de Genes , Humanos , AVC Isquêmico/genética , Masculino , Prognóstico , Mapas de Interação de Proteínas , Acidente Vascular Cerebral/genética
19.
BMC Med Educ ; 22(1): 447, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681190

RESUMO

BACKGROUND: BOPPPS (bridge-in, learning objective, pretest, participatory learning, posttest, and summary) is a student-centered modular teaching model that improves classroom teaching effectiveness. This study's primary aim was to explore whether the BOPPPS model has advantages over traditional instructional approaches in teaching lung cancer courses to clinical medical interns. METHODS: A total of 88 students majoring in clinical medicine of Shandong First Medical University and Shandong University, who had clinical practice in thoracic surgery from January 2018 to December 2019, were divided into two groups, receiving the same lung cancer teaching content. The experimental group (n = 44) utilized the BOPPPS model, while the control group (n = 44) used the traditional instructional approach. A questionnaire was used to attain the students' satisfaction and self-evaluation of the course, and a post-study examination was used to assess end-of-course performance. RESULTS: The experimental group's theoretical examination scores with the BOPPPS teaching model were significantly higher than those in the control group. Students preferred the BOPPPS model more than the traditional instructional approach in course satisfaction, student-teacher interaction, learning initiative, analytical ability, clinical thinking ability, and self-study ability (p < 0.05). CONCLUSIONS: Compared with the traditional instructional approach. The BOPPPS model can better inspire clinical medical students' enthusiasm for thoracic surgery and enhance the students' comprehensive ability. In a word, the BOPPPS model has better teaching effectiveness in the clinical teaching practice of thoracic surgery, which is worthy of reference and popularization.


Assuntos
Neoplasias Pulmonares , Estudantes de Medicina , Cirurgia Torácica , Avaliação Educacional , Humanos , Aprendizagem , Ensino
20.
Small ; 16(30): e2001942, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32602255

RESUMO

Understanding the conformation effect on molecular packing, miscibility, and photovoltaic performance is important to open a new avenue for small-molecule acceptor (SMA) design. Herein, two novel acceptor-(donor-acceptor1-donor)-acceptor (A-DA1D-A)-type asymmetric SMAs are developed, namely C-shaped BDTP-4F and S-shaped BTDTP-4F. The BDTP-4F-based polymer solar cells (PSCs) with PM6 as donor, yields a power conversion efficiency (PCE) of 15.24%, significantly higher than that of the BTDTP-4F-based device (13.12%). The better PCE for BDTP-4F-based device is mainly attributed to more balanced charge transport, weaker bimolecular recombination, and more favorable morphology. Additionally, two traditional A-D-A-type SMAs (IDTP-4F and IDTTP-4F) are also synthesized to investigate the conformation effect on morphology and device performance. Different from the device result above, here, IDTP-4F with S-shape conformation outperforms than IDTTP-4F with C-shape conformation. Importantly, it is found that for these two different types of SMA, the better performing binary blend has similar morphological characteristics. Specifically, both PM6:BDTP-4F and PM6:IDTP-4F blend exhibit perfect nanofibril network structure with proper domain size, obvious face-on orientation and enhance donor-acceptor interactions, thereby better device performance. This work indicates tuning molecular conformation plays pivotal role in morphology and device effciciency, shining a light on the molecular design of the SMAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA