RESUMO
Futuristic technologies such as morphing aircrafts and super-strong artificial muscles depend on metal alloys being as strong as ultrahigh-strength steel yet as flexible as a polymer1-3. However, achieving such 'strong yet flexible' alloys has proven challenging4-9 because of the inevitable trade-off between strength and flexibility5,8,10. Here we report a Ti-50.8 at.% Ni strain glass alloy showing a combination of ultrahigh yield strength of σy ≈ 1.8 GPa and polymer-like ultralow elastic modulus of E ≈ 10.5 GPa, together with super-large rubber-like elastic strain of approximately 8%. As a result, it possesses a high flexibility figure of merit of σy/E ≈ 0.17 compared with existing structural materials. In addition, it can maintain such properties over a wide temperature range of -80 °C to +80 °C and demonstrates excellent fatigue resistance at high strain. The alloy was fabricated by a simple three-step thermomechanical treatment that is scalable to industrial lines, which leads not only to ultrahigh strength because of deformation strengthening, but also to ultralow modulus by the formation of a unique 'dual-seed strain glass' microstructure, composed of a strain glass matrix embedded with a small number of aligned R and B19' martensite 'seeds'. In situ X-ray diffractometry shows that the polymer-like deformation behaviour of the alloy originates from a nucleation-free reversible transition between strain glass and R and B19' martensite during loading and unloading. This exotic alloy with the potential for mass producibility may open a new horizon for many futuristic technologies, such as morphing aerospace vehicles, superman-type artificial muscles and artificial organs.
RESUMO
Governments worldwide have announced stimulus packages to remobilize the labor force after COVID-19 and therefore to cope with the COVID-19-related recession. However, it is still unclear how to facilitate large-scale work resumption. This paper aims to clarify the issue by analyzing the large-scale prefecture-level dataset of human mobility trajectory information for 320 million workers and about 500,000 policy documents in China. We model work resumption as a collective behavioral change due to configurations of capacity, motivation, and policy instruments by using qualitative comparative analysis. We find that the effectiveness of post-COVID-19 recovery stimulus varied across China depending on the fiscal and administrative capacity and the policy motivation of the prefecture. Subnational fiscal and procurement policies were more effective for the wholesale and retail sector and the hotel and catering sector, whereas the manufacturing and business services sectors required more effort regarding employment policies. Due to limited prefectural capacity and wavering policy motivation, the simultaneous adoption of fiscal, employment, and procurement policy interventions endangered post-COVID-19 work resumption. We highlight the necessity of tailored postcrisis recovery strategies based on local fiscal and administrative capacity and the sectoral structure.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , China/epidemiologia , Política Pública , EmpregoRESUMO
Proenzymes, functioning as inactive precursor forms of enzymes, hold significant promise for regulating essential biological processes. Their inherent property of latency, remaining inert until they arrive at the intended site of action, positions them as particularly promising candidates for the development of targeted therapeutics. Despite this potential, the therapeutic potential of proenzymes is challenged by designing proenzymes with excellent selectivity for disease cells. This limitation is further exacerbated by the inability of proenzymes to spontaneously cross the cell membrane, a biological barrier that impedes the cellular internalization of exogenous macromolecules. Therefore, efficacious intracellular delivery is paramount to unlocking the full therapeutic potency of proenzymes.In this Account, we first elucidate our recent advancements made in designing biodegradable lipid nanoparticles (LNPs) for the cell-specific delivery of biomacromolecules, including proteins and nucleic acids. Using a strategy of parallel synthesis, we have constructed an extensive library of ionizable lipids, each integrated with different biodegradable moieties. This combinatorial approach has led to the identification of LNPs that are particularly efficacious for the delivery of biomacromolecules specifically to tumor cells. This innovation capitalizes on the unique intracellular environment of cancer cells to control the degradation of LNPs, thereby ensuring the targeted release of therapeutics within tumor cells. Additionally, we discuss the structure-activity relationship governing the delivery efficacy of these LNPs and their applicability in regulating tumor cell signaling, specifically through the delivery of bacterial effector proteins.In the second segment, we aim to provide an overview of our recent contributions to the field of proenzyme design, where we have chemically tailored proteins to render them responsive to the unique milieu of tumor cells. Specifically, we elaborate on the chemical principles employed to modify proteins and DNAzymes, thereby priming them for activation in the presence of NAD(P)H:quinone oxidoreductase 1 (NQO1), an enzyme that is prevalently upregulated within tumor cells. We summarize the methodologies for intracellular delivery of these proenzymes using biodegradable LNPs, both in vitro and in vivo. The concomitant intracellular delivery and activation of proenzymes are examined in the context of enhanced therapeutic outcomes and targeted CRISPR/Cas9 genome editing.In conclusion, we offer a perspective on the chemical principles that could be leveraged to optimize LNPs for tissue-specific delivery of proenzymes. We also explore chemical strategies for the irreversible modulation of proenzyme activity within living cells and in vivo. Through this discussion, we provide insights into potential avenues for overcoming existing limitations and enhancing the delivery of proenzymes using LNPs, particularly for developing tumor-targeted therapies and genome editing applications.
Assuntos
Precursores Enzimáticos , Nanopartículas , Lipossomos , Edição de Genes , Nanopartículas/química , ProteínasRESUMO
PURPOSE: Neoadjuvant PD-1 blockade combined with chemotherapy is a promising treatment for resectable non-small cell lung cancer (NSCLC), yet the immunological mechanisms contributing to tumor regression and biomarkers corresponding to different pathological responses remain unclear. METHODS: Using dynamic and paired blood samples from NSCLC patients receiving neoadjuvant chemoimmunotherapy, we analyzed the frequencies of CD8 + T-cell and Treg subsets and their dynamic changes during neoadjuvant treatment through flow cytometry. Cytokine profiles and function-related gene expression of CD8 + T cells and Tregs were analyzed through flow cytometry and mRNA-seq. Infiltrating T-cell subsets in resected tissues from patients with different pathological responses were analyzed through multiplex immunofluorescence. RESULTS: Forty-two NSCLC patients receiving neoadjuvant chemoimmunotherapy were enrolled and then underwent surgical resection and pathological evaluation. Nineteen patients had pCR (45%), 7 patients had MPR (17%), and 16 patients had non-MPR (38%). In patients with pCR, the frequencies of CD137 + CD8 + T cells (P = 0.0475), PD-1 + Ki-67 + CD8 + T cells (P = 0.0261) and Tregs (P = 0.0317) were significantly different from those of non-pCR patients before treatment. pCR patients usually had low frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs, and their AUCs were higher than that of tissue PD-L1 expression. Neoadjuvant chemoimmunotherapy markedly improved CD8 + T-cell proliferation and activation, especially in pCR patients, as the frequencies of CD137 + CD8 + (P = 0.0136) and Ki-67 + CD8 + (P = 0.0391) T cells were significantly increased. The blood levels of cytokines such as IL-2 (P = 0.0391) and CXCL10 (P = 0.0195) were also significantly increased in the pCR group, which is consistent with the high density of activated cytotoxic T cells at the tumor site (P < 0.0001). CONCLUSION: Neoadjuvant chemoimmunotherapy drives CD8 + T cells toward a proliferative and active profile. The frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs at baseline might predict the response to neoadjuvant chemoimmunotherapy in NSCLC patients. The increase in IL-2 and CXCL10 might reflect the chemotaxis and enrichment of cytotoxic T cells at the tumor site and a better response to neoadjuvant chemoimmunotherapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Terapia Neoadjuvante , Citocinas , Interleucina-2 , Antígeno Ki-67 , Receptor de Morte Celular Programada 1 , Neoplasias Pulmonares/tratamento farmacológico , Subpopulações de Linfócitos TRESUMO
Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.
Assuntos
Doenças dos Peixes , Chaperonas Moleculares , Infecções Estreptocócicas , Streptococcus agalactiae , Estresse Fisiológico , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ciclídeos , Doenças dos Peixes/microbiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Células RAW 264.7 , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/fisiologia , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/genética , VirulênciaRESUMO
Primary failure of eruption (PFE) is a rare oral disease with an incidence rate of 0.06%. It is characterized by abnormal eruption mechanisms that disrupt tooth eruption. The underlying pathogenic genetic variant and mechanism of PFE remain largely unknown. The purpose of this study was to explore the role of a novel transmembrane protein 119 (TMEM119) mutation in two PFE patients in a Chinese family. Information collection was performed on the family with a diagnosis of PFE, and blood samples from patients and healthy family members were extracted. Whole-exome sequencing was performed. Bioinformatics analysis revealed that a heterozygous variant in the TMEM119 gene (c.G143A, p.S48L) was a disease-associated mutation in this family. Recombinant pcDNA3.1 plasmid-containing wild-type and mutant TMEM119 expression cassettes were successfully constructed and transfected into MC3T3-E1 cells, respectively. The results of in vitro analysis suggested that the subcellular distribution of the TMEM119 protein was transferred from the cell cytoplasm to the nucleus, and the ability of cells to proliferate and migrate as well as glycolytic and mineralized capacities were reduced after mutation. Furthermore, rescue assays showed that activating transcription factor 4 (ATF4) overexpression rescued the attenuated glycolysis and mineralization ability of cells. Results of in vivo analysis demonstrated that TMEM119 was mainly expressed in the alveolar bone around the mouse molar germs, and the expression level increased with tooth eruption, demonstrated using immunohistochemistry and immunofluorescence. Collectively, the novel TMEM119 mutation is potentially pathogenic in the PFE family by affecting the glucose metabolism and mineralized function of osteoblasts, including interaction with ATF4. Our findings broaden the gene mutation spectrum of PFE and further elucidate the pathogenic mechanism of PFE.
Assuntos
Osteogênese , Erupção Dentária , Humanos , Animais , Camundongos , Erupção Dentária/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Mutação , GlicóliseRESUMO
BACKGROUND: Changes in healthy and inflamed pulp on periapical radiographs are traditionally so subtle that they may be imperceptible to human experts, limiting its potential use as an adjunct clinical diagnostic feature. AIM: This study aimed to investigate the feasibility of an image-analysis technique based on the convolutional neural network (CNN) to detect irreversible pulpitis in primary molars on periapical radiographs (PRs). DESIGN: This retrospective study was performed in two health centres. Patients who received indirect pulp therapy at Peking University Hospital for Stomatology were retrospectively identified and randomly divided into training and validation sets (8:2). Using PRs as input to an EfficientNet CNN, the model was trained to categorise cases into either the success or failure group and externally tested on patients who presented to our affiliate institution. Model performance was evaluated using sensitivity, specificity, accuracy and F1 score. RESULTS: A total of 348 PRs with deep caries were enrolled from the two centres. The deep learning model achieved the highest accuracy of 0.90 (95% confidence interval: 0.79-0.96) in the internal validation set, with an overall accuracy of 0.85 in the external test set. The mean greyscale value was higher in the failure group than in the success group (p = .013). CONCLUSION: The deep learning-based model could detect irreversible pulpitis in primary molars with deep caries on PRs. Moreover, this study provides a convenient and complementary method for assessing pulp status.
RESUMO
Hydrogen-bonded organic frameworks (HOFs) are porous nanomaterials that offer exceptional biocompatibility and versatility for integrating proteins for biomedical applications. This minireview concisely discusses recent advancements in the chemistry and functionality of protein-HOF interfaces. It particularly focuses on strategic methodologies, such as the careful selection of building blocks and the genetic engineering of proteins, to facilitate protein-HOF interactions. We examine the role of enzyme encapsulation within HOFs, highlighting its capability to preserve enzyme function, a crucial aspect for applications in biosensing and disease diagnosis. Moreover, we discuss the emerging utility of nanoscale HOFs for intracellular protein delivery, illustrating their applicability as nanoreactors for intracellular catalysis and neuroprotective biorthogonal catalysis within cellular compartments. We highlight the significant advancement of designing biodegradable HOFs tailored for cytosolic protein delivery, underscoring their promising application in targeted cancer therapies. Finally, we provide a perspective viewpoint on the design of biocompatible protein-HOF assemblies, underlining their promising prospects in drug delivery, disease diagnosis, and broader biomedical applications.
Assuntos
Ligação de Hidrogênio , Proteínas , Humanos , Proteínas/química , Proteínas/metabolismo , Materiais Biocompatíveis/química , Estruturas Metalorgânicas/química , Sistemas de Liberação de MedicamentosRESUMO
Messenger RNA (mRNA) is being used as part of an emerging class of biotherapeutics with great promise for preventing and treating a wide range of diseases, as well as encoding programmable nucleases for genome editing. However, mRNA's low stability and immunogenicity, as well as the impermeability of the cell membrane to mRNA greatly limit mRNA's potential for therapeutic use. Lipid nanoparticles (LNPs) are currently one of the most extensively studied nanocarriers for mRNA delivery and have recently been clinically approved for developing mRNA-based vaccines to prevent COVID-19. In this review, we summarize the latest advances in designing ionizable lipids and formulating LNPs for intracellular and tissue-targeted mRNA delivery. Furthermore, we discuss the progress of intracellular mRNA delivery for spatiotemporally controlled CRISPR/Cas9 genome editing by using LNPs. Finally, we provide a perspective on the future of LNP-based mRNA delivery for CRISPR/Cas9 genome editing and the treatment of genetic disorders.
Assuntos
COVID-19 , Nanopartículas , Humanos , Edição de Genes , Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , RNA Mensageiro/genética , COVID-19/genéticaRESUMO
Fast development of space technologies poses a strong challenge for elastic materials, which need to be not only lightweight, strong and compliant, but also able to maintain stable elasticity over a wide temperature range1-4. Here we report a lightweight magnesium-scandium strain glass alloy (Mg with 21.3 at.% Sc) that meets this challenge. This alloy is as light (density ~2 g cm-3) and compliant as organic-based materials5-7 like bones and glass fibre reinforced plastics, but in contrast with those materials, it possesses a nearly temperature-independent (or Elinvar-type), ultralow Young's modulus (~20-23 GPa) over a wide temperature range from room temperature down to 123 K; a higher yield strength of ~200-270 MPa; and a long fatigue life of over one million cycles. As a result, it exhibits a relatively high, temperature-independent elastic energy density of ~0.5 kJ kg-1 among known materials at a moderate stress level of 200 MPa. We show that its exceptional properties stem from a strain glass transition, and the Elinvar-type elasticity originates from its moderate elastic softening effect cancelling out the ever-present elastic hardening. Our findings provide insight into designing materials that possess unconventional and technologically important elastic properties.
Assuntos
Ligas , Módulo de Elasticidade , Elasticidade , Teste de Materiais , TemperaturaRESUMO
In this paper, a hybrid mechanism metasurface (HMM) employing 1-bit random coding is proposed to achieve polarization-insensitive and dual-wideband monostatic/bistatic radar cross section (RCS) reduction under a wide range of incident angles. The anisotropic unit cell is designed by the combination of the multi-objective particle swarm optimization (MOPSO) algorithm and Python-CST joint simulation, which facilitates the rapid acquisition of the desired unit cell with excellent dual-band absorption conversion capability. The unit cell and its mirrored version are used to represent the units "0" and "1", respectively. In addition, the array distribution with random coding of the units "0" and "1" is optimized under different incident angles, polarizations and frequencies, which enables better diffusion-like scattering. Simulation results demonstrate that the proposed coding HMM can effectively reduce the monostatic/bistatic RCS by over 10 dB within the dual-band frequency ranges of 2.07-3.02 THz and 3.78-4.71 THz. Furthermore, the specular and bistatic RCS reduction performances remain stable at oblique incident angles up to 45° for both TE and TM polarizations.
RESUMO
Ceramics, often exhibiting important functional properties like piezoelectricity, superconductivity, and magnetism, are usually mechanically brittle at room temperature and even more brittle at low temperature due to their ionic or covalent bonding nature. The brittleness in their working temperature range (mostly from room down to cryogenic temperatures) has been a limiting factor for the usefulness of these ceramics. In this Letter, we report a surprising "low-temperature toughening" phenomenon in a La-doped CaTiO_{3} perovskite ceramic, where a 2.5× increase of fracture toughness K_{IC} from 1.9 to 4.8 MPa m^{1/2} occurs when cooling from above room temperature (323 K) down to a cryogenic temperature of 123 K, the lowest temperature our experiment can reach. In situ microscopic observations in combination with macroscopic characterizations show that this desired but counterintuitive phenomenon stems from a reentrant strain-glass transition, during which nanosized orthorhombic ferroelastic domains gradually emerge from the existing tetragonal ferroelastic matrix. The temperature stability of this unique microstructure and its stress-induced transition into the macroscopic orthorhombic phase provide a low-temperature toughening mechanism over a wide temperature range and explain the observed phenomenon. Our finding may open a way to design tough ceramics with a wide temperature range and shed light on the nature of reentrant transitions in other ferroic systems.
RESUMO
Anxiety commonly co-occurs with obsessive-compulsive disorder (OCD). Both of them are closely related to stress. However, the shared neurobiological substrates and therapeutic targets remain unclear. Here we report an amelioration of both anxiety and OCD via the histamine presynaptic H3 heteroreceptor on glutamatergic afferent terminals from the prelimbic prefrontal cortex (PrL) to the nucleus accumbens (NAc) core, a vital node in the limbic loop. The NAc core receives direct hypothalamic histaminergic projections, and optogenetic activation of hypothalamic NAc core histaminergic afferents selectively suppresses glutamatergic rather than GABAergic synaptic transmission in the NAc core via the H3 receptor and thus produces an anxiolytic effect and improves anxiety- and obsessive-compulsive-like behaviors induced by restraint stress. Although the H3 receptor is expressed in glutamatergic afferent terminals from the PrL, basolateral amygdala (BLA), and ventral hippocampus (vHipp), rather than the thalamus, only the PrL- and not BLA- and vHipp-NAc core glutamatergic pathways among the glutamatergic afferent inputs to the NAc core is responsible for co-occurrence of anxiety- and obsessive-compulsive-like behaviors. Furthermore, activation of the H3 receptor ameliorates anxiety and obsessive-compulsive-like behaviors induced by optogenetic excitation of the PrL-NAc glutamatergic afferents. These results demonstrate a common mechanism regulating anxiety- and obsessive-compulsive-like behaviors and provide insight into the clinical treatment strategy for OCD with comorbid anxiety by targeting the histamine H3 receptor in the NAc core.
Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Agonistas dos Receptores Histamínicos/administração & dosagem , Núcleo Accumbens/fisiopatologia , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Receptores Histamínicos H3/metabolismo , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiopatologia , Animais , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/psicologia , Modelos Animais de Doenças , Glutamatos/metabolismo , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos H3/administração & dosagem , Humanos , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/fisiopatologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Transtorno Obsessivo-Compulsivo/etiologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/psicologia , Optogenética , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Transgênicos , Técnicas Estereotáxicas , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologiaRESUMO
BACKGROUND: Adequate energy intake is essential for good clinical outcomes. The association between energy intake and readmission burden of patients with heart failure (HF) still needs to be clarified. OBJECTIVE: In this study, our aim was to determine the association between energy intake and readmission in patients with HF. METHODS: A total of 311 inpatients with HF were recruited. Demographic and clinical information were collected during hospitalization; the daily diets of the participants were collected in the second week after discharge using the 3-day diet record, and the energy intake was calculated using a standardized nutrition calculator. The inadequate energy intake was defined as <70% × 25 kcal/kg of ideal body weight. The participants were followed up for 12 weeks after discharge. The number, reasons, and length of stay of unplanned readmissions were collected. Regression analyses were used to evaluate the associations between inadequate energy intake, and readmission rate and readmission days. RESULTS: The median of the energy intake of participants was 1032 (interquartile range, 809-1266) kcal/d. The prevalence of inadequate energy intake was 40%. Patients with inadequate energy intake had a higher risk of unplanned readmission (odds ratio, 5.616; 95% confidence interval, 3.015-10.462; P < .001) and more readmission days (incidence rate ratio, 5.226; 95% confidence interval, 3.829-7.134, P < .001) after adjusting for potential confounders. CONCLUSIONS: Patients with HF had a high incidence of inadequate dietary energy intake, and it increases the burden of readmission.
RESUMO
BACKGROUND: Most patients with heart failure find self-care difficult to perform and rely on family caregivers for support. Informal caregivers, however, often face insufficient psychological preparation and challenges in providing long-term care. Insufficient caregiver preparedness not only results in psychological burden for the informal caregivers but may also lead to a decline in caregiver contributions to patient self-care that affects patient outcomes. OBJECTIVE: Our objective was to test (1) the association of baseline informal caregivers' preparedness with psychological symptoms (anxiety and depression) and quality of life 3 months after baseline among patients with insufficient self-care and (2) the mediating effects of caregivers' contributions to self-care of heart failure (CC-SCHF) on the relationship of caregivers' preparedness with patients' outcomes at 3 months. METHODS: A longitudinal design was used to collect data between September 2020 and January 2022 in China. Data analyses were conducted using descriptive statistics, correlations, and linear mixed models. We used model 4 of the PROCESS program in SPSS with bootstrap testing to evaluate the mediating effect of CC-SCHF of informal caregivers' preparedness at baseline with psychological symptoms or quality of life among patients with HF 3 months later. RESULTS: Caregiver preparedness was positively associated with CC-SCHF maintenance ( r = 0.685, P < .01), CC-SCHF management ( r = 0.403, P < .01), and CC-SCHF confidence ( r = 0.600, P < .01). Good caregiver preparedness directly predicted lower psychological symptoms (anxiety and depression) and higher quality of life for patients with insufficient self-care. The associations of caregiver preparedness with short-term quality of life and depression of patients with HF with insufficient self-care were mediated by CC-SCHF management. CONCLUSIONS: Enhancing the preparedness of informal caregivers may improve psychological symptoms and quality of life of heart failure patients with insufficient self-care.
Assuntos
Cuidadores , Insuficiência Cardíaca , Humanos , Cuidadores/psicologia , Qualidade de Vida/psicologia , Autocuidado , Estresse Psicológico/psicologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/psicologiaRESUMO
Gamma imagers play a key role in both industrial and medical applications. Modern gamma imagers typically employ iterative reconstruction methods in which the system matrix (SM) is a key component to obtain high-quality images. An accurate SM could be acquired from an experimental calibration step with a point source across the FOV, but at a cost of long calibration time to suppress noise, posing challenges to real-world applications. In this work, we propose a time-efficient SM calibration approach for a 4π-view gamma imager with short-time measured SM and deep-learning-based denoising. The key steps include decomposing the SM into multiple detector response function (DRF) images, categorizing DRFs into multiple groups with a self-adaptive K-means clustering method to address sensitivity discrepancy, and independently training separate denoising deep networks for each DRF group. We investigate two denoising networks and compare them against a conventional Gaussian filtering method. The results demonstrate that the denoised SM with deep networks faithfully yields a comparable imaging performance with the long-time measured SM. The SM calibration time is reduced from 1.4 h to 8 min. We conclude that the proposed SM denoising approach is promising and effective in enhancing the productivity of the 4π-view gamma imager, and it is also generally applicable to other imaging systems that require an experimental calibration step.
RESUMO
(1) Background: Gamma cameras have wide applications in industry, including nuclear power plant monitoring, emergency response, and homeland security. The desirable properties of a gamma camera include small weight, good resolution, large field of view (FOV), and wide imageable source energy range. Compton cameras can have a 4π FOV but have limited sensitivity at low energy. Coded-aperture gamma cameras are operatable at a wide photon energy range but typically have a limited FOV and increased weight due to the thick heavy metal collimators and shielding. In our lab, we previously proposed a 4π-view gamma imaging approach with a 3D position-sensitive detector, with which each detector element acts as the collimator for other detector elements. We presented promising imaging performance for 99mTc, 18F, and 137Cs sources. However, the imaging performance for middle- and high-energy sources requires further improvement. (2) Methods: In this study, we present a new gamma camera design to achieve satisfactory imaging performance in a wide gamma energy range. The proposed gamma camera consists of interspaced bar-shaped GAGG (Ce) crystals and tungsten absorbers. The metal bars enhance collimation for high-energy gamma photons without sacrificing the FOV. We assembled a gamma camera prototype and conducted experiments to evaluate the gamma camera's performance for imaging 57Co, 137Cs, and 60Co point sources. (3) Results: Results show that the proposed gamma camera achieves a positioning accuracy of <3° for all gamma energies. It can clearly resolve two 137Cs point sources with 10° separation, two 57Co and two 60Co point sources with 20° separation, as well as a 2 × 3 137Cs point-source array with 20° separation. (4) Conclusions: We conclude that the proposed gamma camera design has comprehensive merits, including portability, 4π-view FOV, and good angular resolution across a wide energy range. The presented approach has promising potential in nuclear security applications.
Assuntos
Câmaras gama , Metais Pesados , Desenho de Equipamento , Diagnóstico por ImagemRESUMO
Ehm2/1, an Ehm2 transcript variant, regulates the cytoskeleton by binding to plasma membrane proteins. However, the role of Ehm2/1 in breast cancer development remains poorly understood. This study shows that, the expression of Ehm2/1 was decreased in breast cancer and that patients with low Ehm2/1 expression had a significantly poorer prognosis than those with high expression of Ehm2/1. Overexpression of Ehm2/1 in MCF-7 breast cancer cells inhibited cell migration and invasion. Ehm2/1 markedly increased the stability and half-life of E-cadherin. Moreover, Ehm2/1 was collocated with E-cadherin in the plasma membrane of MCF-7 cells. Furthermore, downregulation of Ehm2/1 promoted ubiquitination of E-cadherin, whereas overexpression of Ehm2/1 inhibited ubiquitination of E-cadherin. These results suggest that Ehm2/1 could suppress the migration and invasion of breast cancer cells by increasing E-cadherin stability.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Células MCF-7RESUMO
GABAergic network activity has been established to be involved in numerous physiological processes and pathological conditions. Extensive studies have corroborated that GABAergic network activity regulates excitatory synaptic networks by activating presynaptic GABAB receptors (GABAB Rs). It is well documented that astrocytes express GABAB Rs and respond to GABAergic network activity. However, little is known about whether astrocytic GABAB Rs regulate excitatory synaptic transmission mediated by GABAergic network activity. To address this issue, we combined whole-cell recordings, optogenetics, calcium imaging, and pharmacological approaches to specifically activate hippocampal somatostatin-expressing interneurons (SOM-INs), a type of interneuron that targets pyramidal cell dendrites, while monitoring excitatory synaptic transmission in CA1 pyramidal cells. We found that optogenetic stimulation of SOM-INs increases astrocyte Ca2+ signaling via the activation of astrocytic GABAB Rs and GAT-3. SOM-INs depress excitatory neurotransmission by activating presynaptic GABAB Rs and astrocytic GABAB Rs, the latter inducing the release of ATP/adenosine. In turn, adenosine inhibits excitatory synaptic transmission by activating presynaptic adenosine A1 receptors (A1 Rs). Overall, our results reveal a novel mechanism that SOM-INs activation-induced synaptic depression is partially mediated by the activation of astrocytic GABAB Rs.
Assuntos
Astrócitos , Interneurônios , Astrócitos/metabolismo , Interneurônios/metabolismo , Hipocampo/metabolismo , Transmissão Sináptica/fisiologia , Somatostatina , Receptores de GABA-B/fisiologia , Receptores Purinérgicos P1/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adenosina/metabolismoRESUMO
BACKGROUND: Dietary salt restriction is recommended by many guidelines for patients with heart failure (HF). Quality of life (QoL) is an important end point of this intervention. However, the literature is still limited regarding the effect of dietary salt restriction on QoL in patients with HF. AIMS: We performed a systematic review and meta-analysis of randomized controlled trials to evaluate the effect of dietary sodium restriction on QoL in patients with HF. METHODS: We searched PubMed (MEDLINE), the Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, and Cumulative Index to Nursing and Allied Health from the establishment of each database to December 20, 2020. We included randomized controlled trials with sodium restriction as an intervention. The primary outcome was QoL, and the secondary outcomes were mortality, readmission, and fatigue. We obtained the full text of potentially relevant trials, extracted data from the included trials, assessed their risk of bias, and performed a meta-analysis. RESULTS: We included 10 trials (1011 participants with HF) with 7 days to 83 months of follow-up. Dietary sodium restriction did not improve QoL over the long term (>30 days) ( P = .61). The pooled effects showed that this intervention might increase mortality risk ( P < .00001). It did not reduce the readmission rate within the short term (≤30 days) ( P = .78) but increased the readmission rate over the long term ( P = .0003). CONCLUSION: Our study did not show that interventions to restrict dietary sodium had a positive effect on patients with HF in terms of QoL, mortality, or readmission.